1
|
Ray AP, Jin B, Eddy MT. The Conformational Equilibria of a Human GPCR Compared between Lipid Vesicles and Aqueous Solutions by Integrative 19F-NMR. J Am Chem Soc 2025. [PMID: 40377170 DOI: 10.1021/jacs.4c15106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Endogenous phospholipids influence the conformational equilibria of G protein-coupled receptors, regulating their ability to bind drugs and form signaling complexes. However, most studies of GPCR-lipid interactions have been carried out in mixed micelles or lipid nanodiscs. Though useful, these membrane mimetics do not fully replicate the physical properties of native cellular membranes associated with large assemblies of lipids. We investigated the conformational equilibria of the human A2A adenosine receptor (A2AAR) in phospholipid vesicles using 19F solid-state magic angle spinning NMR (SSNMR). By applying an optimized sample preparation workflow and experimental conditions, we were able to obtain 19F-SSNMR spectra for both antagonist- and agonist-bound complexes with sensitivity and line widths closely comparable to those achieved using solution NMR. This facilitated a direct comparison of the A2AAR conformational equilibria across detergent micelle, lipid nanodisc, and lipid vesicle preparations. While antagonist-bound A2AAR showed similar conformational equilibria across all membrane and membrane mimetic systems, the conformational equilibria of agonist-bound A2AAR exhibited differences among different environments. This suggests that the conformational equilibria of GPCRs may be influenced not only by specific receptor-lipid interactions but also by the membrane properties found in larger lipid assemblies.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Beining Jin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Sever AIM, Ahmed R, Rößler P, Kay LE. Solution NMR goes big: Atomic resolution studies of protein components of molecular machines and phase-separated condensates. Curr Opin Struct Biol 2025; 90:102976. [PMID: 39837113 DOI: 10.1016/j.sbi.2024.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 01/23/2025]
Abstract
The tools of structural biology have undergone remarkable advances in the past decade. These include new computational and experimental approaches that have enabled studies at a level of detail - and ease - that were not previously possible. Yet, significant deficiencies in our understanding of biomolecular function remain and new challenges must be overcome to go beyond static pictures towards a description of function in terms of structural dynamics. Solution Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as a powerful technique for atomic resolution studies of the dynamics of a wide range of biomolecules, including molecular machines and the components of phase-separated condensates. Here we highlight some of the very recent advances in these areas that have been driven by NMR.
Collapse
Affiliation(s)
- Alexander I M Sever
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Rashik Ahmed
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Philip Rößler
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Lewis E Kay
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
3
|
D’Amore VM, Conflitti P, Marinelli L, Limongelli V. Minute-timescale free-energy calculations reveal a pseudo-active state in the adenosine A 2A receptor activation mechanism. Chem 2024; 10:3678-3698. [PMID: 40191447 PMCID: PMC11965979 DOI: 10.1016/j.chempr.2024.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 04/09/2025]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins targeted by over one-third of marketed drugs. Understanding their activation mechanism is essential for precise regulation of drug pharmacological response. In this work, we elucidate the conformational landscape of the adenosine A2A receptor (A2AR) activation mechanism in its basal apo form and under different ligand-bound conditions through minute-timescale free-energy calculations. We identified a pseudo-active state (pAs) of the A2AR apo form, stabilized by specific "microswitch" residues, including a salt bridge established between the conserved residues R5.66 and E6.30. The pAs enables A2AR to couple with Gs protein upon rearrangement of the intracellular end of transmembrane helix 6, providing unprecedented structural insights into receptor function and signaling dynamics. Our simulation protocol is versatile and can be adapted to study the activation of any GPCRs, potentially making it a valuable tool for drug design and "biased signaling" studies.
Collapse
Affiliation(s)
- Vincenzo Maria D’Amore
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland
| |
Collapse
|
4
|
Fouillen A, Couvineau P, Gaibelet G, Riché S, Orcel H, Mendre C, Kanso A, Lanotte R, Nguyen J, Dimon J, Urbach S, Sounier R, Granier S, Bonnet D, Cong X, Mouillac B, Déméné H. Biased activation of the vasopressin V2 receptor probed by molecular dynamics simulations, NMR and pharmacological studies. Comput Struct Biotechnol J 2024; 23:3784-3799. [PMID: 39525085 PMCID: PMC11550766 DOI: 10.1016/j.csbj.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) control critical cell signaling. Their response to extracellular stimuli involves conformational changes to convey signals to intracellular effectors, among which the most important are G proteins and β-arrestins (βArrs). Biased activation of one pathway is a field of intense research in GPCR pharmacology. Combining NMR, site-directed mutagenesis, molecular pharmacology, and molecular dynamics (MD) simulations, we studied the conformational diversity of the vasopressin V2 receptor (V2R) bound to different types of ligands: the antagonist Tolvaptan, the endogenous unbiased agonist arginine-vasopressin, and MCF14, a partial Gs protein-biased agonist. A double-labeling NMR scheme was developed to study the receptor conformational changes and ligand binding: V2R was subjected to lysine 13CH3 methylation for complementary NMR studies, whereas the agonists were tagged with a paramagnetic probe. Paramagnetic relaxation enhancements and site-directed mutagenesis validated the ligand binding modes in the MD simulations. We found that the bias for the Gs protein over the βArr pathway involves interactions between the conserved NPxxY motif in the transmembrane helix 7 (TM7) and TM3, compacting helix 8 (H8) toward TM1 and likely inhibiting βArr signaling. A similar mechanism was elicited for the pathogenic mutation I130N, which constitutively activates the Gs proteins without concomitant βArr recruitment. The findings suggest common patterns of biased signaling in class A GPCRs, as well as a rationale for the design of G protein-biased V2R agonists.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Pierre Couvineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Gérald Gaibelet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Stéphanie Riché
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 67412 Illkirch-Graffenstaden, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Christiane Mendre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Ali Kanso
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Romain Lanotte
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Julie Nguyen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Juliette Dimon
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Dominique Bonnet
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 67412 Illkirch-Graffenstaden, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Hélène Déméné
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, 34090, Montpellier, France
| |
Collapse
|
5
|
Jones AJY, Harman TH, Harris M, Lewis OE, Ladds G, Nietlispach D. Binding kinetics drive G protein subtype selectivity at the β 1-adrenergic receptor. Nat Commun 2024; 15:1334. [PMID: 38351103 PMCID: PMC10864275 DOI: 10.1038/s41467-024-45680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) bind to different G protein α-subtypes with varying degrees of selectivity. The mechanism by which GPCRs achieve this selectivity is still unclear. Using 13C methyl methionine and 19F NMR, we investigate the agonist-bound active state of β1AR and its ternary complexes with different G proteins in solution. We find the receptor in the ternary complexes adopts very similar conformations. In contrast, the full agonist-bound receptor active state assumes a conformation differing from previously characterised activation intermediates or from β1AR in ternary complexes. Assessing the kinetics of binding for the agonist-bound receptor with different G proteins, we find the increased affinity of β1AR for Gs results from its much faster association with the receptor. Consequently, we suggest a kinetic-driven selectivity gate between canonical and secondary coupling which arises from differential favourability of G protein binding to the agonist-bound receptor active state.
Collapse
Affiliation(s)
- Andrew J Y Jones
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Thomas H Harman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Oliver E Lewis
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
6
|
Wei S, Pour NG, Tiruvadi-Krishnan S, Ray AP, Thakur N, Eddy MT, Lamichhane R. Single-molecule visualization of human A 2A adenosine receptor activation by a G protein and constitutively activating mutations. Commun Biol 2023; 6:1218. [PMID: 38036689 PMCID: PMC10689853 DOI: 10.1038/s42003-023-05603-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Mutations that constitutively activate G protein-coupled receptors (GPCRs), known as constitutively activating mutations (CAMs), modify cell signaling and interfere with drugs, resulting in diseases with limited treatment options. We utilize fluorescence imaging at the single-molecule level to visualize the dynamic process of CAM-mediated activation of the human A2A adenosine receptor (A2AAR) in real time. We observe an active-state population for all CAMs without agonist stimulation. Importantly, activating mutations significantly increase the population of an intermediate state crucial for receptor activation, notably distinct from the addition of a partner G protein. Activation kinetics show that while CAMs increase the frequency of transitions to the intermediate state, mutations altering sodium sensitivity increase transitions away from it. These findings indicate changes in GPCR function caused by mutations may be predicted based on whether they favor or disfavor formation of an intermediate state, providing a framework for designing receptors with altered functions or therapies that target intermediate states.
Collapse
Affiliation(s)
- Shushu Wei
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Sriram Tiruvadi-Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA
| | - Arka Prabha Ray
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Naveen Thakur
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA.
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|