1
|
Fernando MB, Fan Y, Zhang Y, Tokolyi A, Murphy AN, Kammourh S, Deans PJM, Ghorbani S, Onatzevitch R, Pero A, Padilla C, Williams SE, Flaherty EK, Prytkova IA, Cao L, Knowles DA, Fang G, Slesinger PA, Brennand KJ. Phenotypic complexities of rare heterozygous neurexin-1 deletions. Nature 2025:10.1038/s41586-025-08864-9. [PMID: 40205044 DOI: 10.1038/s41586-025-08864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Given the large number of genes significantly associated with risk for neuropsychiatric disorders, a critical unanswered question is the extent to which diverse mutations-sometimes affecting the same gene-will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, which encodes a presynaptic cell-adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain and are differentially affected by unique (non-recurrent) deletions1. We contrast the cell-type-specific effect of patient-specific mutations in NRXN1 using human-induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Through distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1+/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Reciprocal isogenic manipulations causally demonstrate that aberrant splicing drives these changes in synaptic activity. For NRXN1 deletions, and perhaps more broadly, precision medicine will require stratifying patients based on whether their gene mutations act through LOF or GOF mechanisms, to achieve individualized restoration of NRXN1 isoform repertoires by increasing wild-type and/or ablating mutant isoforms. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disorders, our findings add nuance to future considerations of precision medicine.
Collapse
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yu Fan
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yanchun Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Aleta N Murphy
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Kammourh
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P J Michael Deans
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sadaf Ghorbani
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Bergen Center for Medical Stem Cell Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ryan Onatzevitch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana Pero
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Padilla
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah E Williams
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin K Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iya A Prytkova
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Cao
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Knowles
- New York Genome Center, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul A Slesinger
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Ritchie EM, Acar D, Zhong S, Pu Q, Li Y, Zheng B, Jin Y. Translatome analysis reveals cellular network in DLK-dependent hippocampal glutamatergic neuron degeneration. eLife 2025; 13:RP101173. [PMID: 40067879 PMCID: PMC11896613 DOI: 10.7554/elife.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
The conserved MAP3K12/Dual Leucine Zipper Kinase (DLK) plays versatile roles in neuronal development, axon injury and stress responses, and neurodegeneration, depending on cell-type and cellular contexts. Emerging evidence implicates abnormal DLK signaling in several neurodegenerative diseases. However, our understanding of the DLK-dependent gene network in the central nervous system remains limited. Here, we investigated the roles of DLK in hippocampal glutamatergic neurons using conditional knockout and induced overexpression mice. We found that dorsal CA1 and dentate gyrus neurons are vulnerable to elevated expression of DLK, while CA3 neurons appear less vulnerable. We identified the DLK-dependent translatome that includes conserved molecular signatures and displays cell-type specificity. Increasing DLK signaling is associated with disruptions to microtubules, potentially involving STMN4. Additionally, primary cultured hippocampal neurons expressing different levels of DLK show altered neurite outgrowth, axon specification, and synapse formation. The identification of translational targets of DLK in hippocampal glutamatergic neurons has relevance to our understanding of selective neuron vulnerability under stress and pathological conditions.
Collapse
Affiliation(s)
- Erin M Ritchie
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
- Biomedical Sciences Graduate Program, School of Medicine, University of California San DiegoLa JollaUnited States
| | - Dilan Acar
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Siming Zhong
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Qianyi Pu
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Yunbo Li
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San DiegoLa JollaUnited States
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San DiegoLa JollaUnited States
- Department of Neurosciences, School of Medicine, University of California San DiegoLa JollaUnited States
- Kavli Institute for Brain and Mind, University of California San DiegoLa JollaUnited States
| |
Collapse
|
4
|
Symonová R, Jůza T, Tesfaye M, Brabec M, Bartoň D, Blabolil P, Draštík V, Kočvara L, Muška M, Prchalová M, Říha M, Šmejkal M, Souza AT, Sajdlová Z, Tušer M, Vašek M, Skubic C, Brabec J, Kubečka J. Transition to Piscivory Seen Through Brain Transcriptomics in a Juvenile Percid Fish: Complex Interplay of Differential Gene Transcription, Alternative Splicing, and ncRNA Activity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:257-277. [PMID: 39629900 PMCID: PMC11788885 DOI: 10.1002/jez.2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 02/04/2025]
Abstract
Pikeperch (Sander Lucioperca) belongs to main predatory fish species in freshwater bodies throughout Europe playing the key role by reducing planktivorous fish abundance. Two size classes of the young-of-the-year (YOY) pikeperch are known in Europe and North America. Our long-term fish survey elucidates late-summer size distribution of YOY pikeperch in the Lipno Reservoir (Czechia) and recognizes two distinct subcohorts: smaller pelagic planktivores heavily outnumber larger demersal piscivores. To explore molecular mechanisms accompanying the switch from planktivory to piscivory, we compared brain transcriptomes of both subcohorts and identified 148 differentially transcribed genes. The pathway enrichment analyses identified the piscivorous phase to be associated with genes involved in collagen and extracellular matrix generation with numerous Gene Ontology (GO), while the planktivorous phase was associated with genes for non-muscle-myosins (NMM) with less GO terms. Transcripts further upregulated in planktivores from the periphery of the NMM network were Pmchl, Pomcl, and Pyyb, all involved also in appetite control and producing (an)orexigenic neuropeptides. Noncoding RNAs were upregulated in transcriptomes of planktivores including three transcripts of snoRNA U85. Thirty genes mostly functionally unrelated to those differentially transcribed were alternatively spliced between the subcohorts. Our results indicate planktivores as potentially driven by voracity to initiate the switch to piscivory, while piscivores undergo a dynamic brain development. We propose a spatiotemporal spreading of juvenile development over a longer period and larger spatial scales through developmental plasticity as an adaptation to exploiting all types of resources and decreasing the intraspecific competition.
Collapse
Affiliation(s)
- Radka Symonová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Tomáš Jůza
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Million Tesfaye
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of WatersUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Marek Brabec
- Institute of Computer ScienceCzech Academy of SciencesPragueCzech Republic
| | - Daniel Bartoň
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Petr Blabolil
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Vladislav Draštík
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Luboš Kočvara
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Milan Muška
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Marie Prchalová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Milan Říha
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Marek Šmejkal
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Allan T. Souza
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Institute for Atmospheric and Earth System Research INARForest Sciences, Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiFinland
| | - Zuzana Sajdlová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Michal Tušer
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Mojmír Vašek
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Cene Skubic
- Institute for Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio‐Chips, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Jakub Brabec
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Jan Kubečka
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
5
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
6
|
Melrose J. Dystroglycan-HSPG interactions provide synaptic plasticity and specificity. Glycobiology 2024; 34:cwae051. [PMID: 39223703 PMCID: PMC11368572 DOI: 10.1093/glycob/cwae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This study examined the roles of the laminin and proteoglycan receptor dystroglycan (DG) in extracellular matrix stabilization and cellular mechanosensory processes conveyed through communication between the extracellular matrix (ECM) and cytoskeleton facilitated by DG. Specific functional attributes of HS-proteoglycans (HSPGs) are conveyed through interactions with DG and provide synaptic specificity through diverse interactions with an extensive range of cell attachment and adaptor proteins which convey synaptic plasticity. HSPG-DG interactions are important in phototransduction and neurotransduction and facilitate retinal bipolar-photoreceptor neuronal signaling in vision. Besides synaptic stabilization, HSPG-DG interactions also stabilize basement membranes and the ECM and have specific roles in the assembly and function of the neuromuscular junction. This provides neuromuscular control of muscle systems that control conscious body movement as well as essential autonomic control of diaphragm, intercostal and abdominal muscles and muscle systems in the face, mouth and pharynx which assist in breathing processes. DG is thus a multifunctional cell regulatory glycoprotein receptor and regulates a diverse range of biological and physiological processes throughout the human body. The unique glycosylation of the αDG domain is responsible for its diverse interactions with ECM components in cell-ECM signaling. Cytoskeletal cell regulatory switches assembled by the βDG domain in its role as a nuclear scaffolding protein respond to such ECM cues to regulate cellular behavior and tissue homeostasis thus DG has fascinating and diverse roles in health and disease.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. Development 2024; 151:dev202733. [PMID: 39190555 PMCID: PMC11385328 DOI: 10.1242/dev.202733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the motor neuron-secreted synapse organizer madd-4 (punctin/ADAMTSL), display severe GABA receptor type A (GABAAR) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g. unc-25/GAD, unc-47/VGAT). Hence, UNC-30 controls GABAA receptor clustering in postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two crucial processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 as both an activator and a repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene variants.
Collapse
Affiliation(s)
- Edgar Correa
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Morgane Mialon
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Mélissa Cizeron
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Jean-Louis Bessereau
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Berangere Pinan-Lucarre
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Cesari E, Farini D, Medici V, Ehrmann I, Guerra M, Testa E, Naro C, Geloso MC, Pagliarini V, La Barbera L, D’Amelio M, Orsini T, Vecchioli SF, Tamagnone L, Fort P, Viscomi MT, Elliott DJ, Sette C. Differential expression of paralog RNA binding proteins establishes a dynamic splicing program required for normal cerebral cortex development. Nucleic Acids Res 2024; 52:4167-4184. [PMID: 38324473 PMCID: PMC11077083 DOI: 10.1093/nar/gkae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.
Collapse
Affiliation(s)
- Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ingrid Ehrmann
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Erika Testa
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Livia La Barbera
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D’Amelio
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
- Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC/CNR), Monterotondo, 00015 Rome, Italy
| | - Stefano Farioli Vecchioli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC/CNR), Monterotondo, 00015 Rome, Italy
| | - Luca Tamagnone
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - Philippe Fort
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | - Maria Teresa Viscomi
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| |
Collapse
|
9
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
10
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580278. [PMID: 38405977 PMCID: PMC10888783 DOI: 10.1101/2024.02.14.580278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating the expression of key effector molecules, such as neurotransmitter (NT) biosynthesis proteins, ion channels and neuropeptides. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA motor neuron identity in C. elegans , is required for NT receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the MN-secreted synapse organizer madd-4 ( Punctin/ADAMTSL ), display severe GABA receptor type A (GABA A R) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g., unc-25/GAD , unc-47/VGAT ). Hence, UNC-30 controls GABA A R clustering on postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two critical processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 both as an activator and repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene mutations.
Collapse
|
11
|
Traenkner D, Shennib O, Johnson A, Weinbrom A, Taylor MR, Williams ME. Modular Splicing Is Linked to Evolution in the Synapse-Specificity Molecule Kirrel3. eNeuro 2023; 10:ENEURO.0253-23.2023. [PMID: 37977826 DOI: 10.1523/eneuro.0253-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Kirrel3 is a cell-adhesion molecule that instructs the formation of specific synapses during brain development in mouse and Kirrel3 variants may be risk factors for autism and intellectual disabilities in humans. Kirrel3 is predicted to undergo alternative splicing but brain isoforms have not been studied. Here, we present the first in-depth characterization of Kirrel3 isoform diversity in brain using targeted, long-read mRNA sequencing of mouse hippocampus. We identified 19 isoforms with predicted transmembrane and secreted forms and show that even rare isoforms generate detectable protein in the brain. We also analyzed publicly-available long-read mRNA databases from human brain tissue and found 11 Kirrel3 isoforms that, similar to mouse, encode transmembrane and secreted forms. In mice and humans, Kirrel3 diversity arises from alternative, independent use of protein-domain coding exons and alternative early translation-stop signals. Intriguingly, the alternatively spliced exons appear at branch points in the chordate phylogenetic tree, including one exon only found in humans and their closest living relatives, the great apes. Together, these results validate a simple pipeline for analyzing isoform diversity in genes with low expression and suggest that Kirrel3 function is fine-tuned by alternative splicing and may play a role in brain evolution.
Collapse
Affiliation(s)
- Dimitri Traenkner
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Omar Shennib
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Alyssa Johnson
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Adam Weinbrom
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Matthew R Taylor
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
12
|
Verdile V, Riccioni V, Guerra M, Ferrante G, Sette C, Valle C, Ferri A, Paronetto MP. An impaired splicing program underlies differentiation defects in hSOD1 G93A neural progenitor cells. Cell Mol Life Sci 2023; 80:236. [PMID: 37524863 PMCID: PMC11072603 DOI: 10.1007/s00018-023-04893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult devastating neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), resulting in progressive paralysis and death. Genetic animal models of ALS have highlighted dysregulation of synaptic structure and function as a pathogenic feature of ALS-onset and progression. Alternative pre-mRNA splicing (AS), which allows expansion of the coding power of genomes by generating multiple transcript isoforms from each gene, is widely associated with synapse formation and functional specification. Deciphering the link between aberrant splicing regulation and pathogenic features of ALS could pave the ground for novel therapeutic opportunities. Herein, we found that neural progenitor cells (NPCs) derived from the hSOD1G93A mouse model of ALS displayed increased proliferation and propensity to differentiate into neurons. In parallel, hSOD1G93A NPCs showed impaired splicing patterns in synaptic genes, which could contribute to the observed phenotype. Remarkably, master splicing regulators of the switch from stemness to neural differentiation are de-regulated in hSOD1G93A NPCs, thus impacting the differentiation program. Our data indicate that hSOD1G93A mutation impacts on neurogenesis by increasing the NPC pool in the developing mouse cortex and affecting their intrinsic properties, through the establishment of a specific splicing program.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Marika Guerra
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Cristiana Valle
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Alberto Ferri
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy.
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|