1
|
Hirano M, Kimoto Y, Shiotani S, Furuya S. Enhanced Somatosensory Inhibition Sharpens Hand Representation and Sensorimotor Skills in Pianists. J Neurosci 2025; 45:e1486242024. [PMID: 39746821 PMCID: PMC11841757 DOI: 10.1523/jneurosci.1486-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025] Open
Abstract
Dexterous motor skills, like those needed for playing musical instruments and sports, require the somatosensory system to accurately and rapidly process somatosensory information from multiple body parts. This is challenging due to the convergence of afferent inputs from different body parts into a single neuron and the overlapping representation of neighboring body parts in the somatosensory cortices. How do trained individuals, such as pianists and athletes, manage this? Here, a series of five experiments with pianists and nonmusicians (female and male) shows that pianists have enhanced inhibitory function in the somatosensory system, which isolates the processing of somatosensory afferent inputs from each finger. This inhibitory function was assessed using a paired-pulse paradigm of somatosensory evoked potentials in electroencephalography, which measures the suppressive effect of a first stimulus [i.e., conditioning stimulus (CS)] on the response to a subsequent second stimulus. We found that pianists and nonmusicians showed an inhibitory response to the sequential stimuli to the peripheral somatosensory nerve at the wrist when the CS was intense. However, only pianists exhibited an inhibitory response to a weak CS, indicating enhanced inhibitory function in pianists. Additionally, the CS increased the information content segregating individual fingers represented in the cortical activity evoked by passive finger movements and improved the perception of fast multifinger sequential movements, specifically for pianists. Our findings provide the first evidence for experience-dependent plasticity in somatosensory inhibitory function and highlight its role in the expert motor performance of pianists.
Collapse
Affiliation(s)
- Masato Hirano
- Sony Computer Science Laboratories Inc., Tokyo 141-0022, Japan
- NeuroPiano Institute, Kyoto 600-8086, Japan
| | - Yudai Kimoto
- Sony Computer Science Laboratories Inc., Tokyo 141-0022, Japan
| | | | - Shinichi Furuya
- Sony Computer Science Laboratories Inc., Tokyo 141-0022, Japan
- NeuroPiano Institute, Kyoto 600-8086, Japan
| |
Collapse
|
2
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|