1
|
Zhang X, He XL, Jiang ZH, Qi J, Huang CC, Zhao JS, Gu N, Lu Y, Wang Q. The 5-HT Descending Facilitation System Contributes to the Disinhibition of Spinal PKCγ Neurons and Neuropathic Allodynia via 5-HT 2C Receptors. Neurosci Bull 2025:10.1007/s12264-025-01383-7. [PMID: 40089966 DOI: 10.1007/s12264-025-01383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 03/18/2025] Open
Abstract
Neuropathic pain, often featuring allodynia, imposes significant physical and psychological burdens on patients, with limited treatments due to unclear central mechanisms. Addressing this challenge remains a crucial unsolved issue in pain medicine. Our previous study, using protein kinase C gamma (PKCγ)-tdTomato mice, highlights the spinal feedforward inhibitory circuit involving PKCγ neurons in gating neuropathic allodynia. However, the regulatory mechanisms governing this circuit necessitate further elucidation. We used diverse transgenic mice and advanced techniques to uncover the regulatory role of the descending serotonin (5-HT) facilitation system on spinal PKCγ neurons. Our findings revealed that 5-HT neurons from the rostral ventromedial medulla hyperpolarize spinal inhibitory interneurons via 5-HT2C receptors, disinhibiting the feedforward inhibitory circuit involving PKCγ neurons and exacerbating allodynia. Inhibiting spinal 5-HT2C receptors restored the feedforward inhibitory circuit, effectively preventing neuropathic allodynia. These insights offer promising therapeutic targets for neuropathic allodynia management, emphasizing the potential of spinal 5-HT2C receptors as a novel avenue for intervention.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Lan He
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen-Hua Jiang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Qi
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen-Chen Huang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian-Shuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Gu
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Qian W, Xu X, Wu Y, Yu L, Wang C, Yan M, Yu R. Altered white matter microstructural integrity in patients with postherpetic neuralgia: a combined DTI and DTI-NODDI study. Front Neurosci 2025; 19:1552961. [PMID: 40040848 PMCID: PMC11876147 DOI: 10.3389/fnins.2025.1552961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Background Postherpetic neuralgia (PHN) is a debilitating condition resulting from herpes zoster infection, characterized by persistent pain that significantly impacts quality of life. This study aimed to investigate the white matter microstructural alterations associated with PHN and to assess the relationship between diffusion metrics and clinical symptoms. Methods A total of 29 patients with PHN, 28 patients recovering from herpes zoster (RHZ), and 27 healthy controls (HC) were recruited, and clinical assessments were obtained to evaluate pain intensity and psychological distress. Diffusion tensor imaging (DTI) data was collected, followed by analysis of diffusion and neurite orientation dispersion and density imaging (NODDI) metrics. Statistical analyses included ANOVA to compare groups and Pearson correlation coefficients to assess relationships between imaging metrics and clinical outcomes. Results PHN patients exhibited significantly altered white matter integrity, specifically in neurite density index (NDI) and orientation dispersion index, compared to both RHZ patients and HC. Significant correlations were also found between altered imaging metrics and clinical assessments of pain and emotional distress, with lower fractional anisotropy (FA) and NDI associated with higher pain scores and psychological symptoms. Conclusion Our study highlights significant microstructural changes in white matter tracts in patients with PHN, indicating compromised neural integrity that correlates with increased pain perception and emotional distress. NODDI demonstrated superior sensitivity in detecting these alterations compared to traditional DTI metrics, underscoring its potential for enhancing diagnostic and therapeutic approaches in managing chronic pain conditions like PHN.
Collapse
Affiliation(s)
- Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaopei Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Wu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Risheng Yu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
3
|
Browne TJ, Smith KM, Gradwell MA, Dayas CV, Callister RJ, Hughes DI, Graham BA. Lateral lamina V projection neuron axon collaterals connect sensory processing across the dorsal horn of the mouse spinal cord. Sci Rep 2024; 14:26354. [PMID: 39487174 PMCID: PMC11530558 DOI: 10.1038/s41598-024-73620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024] Open
Abstract
Spinal projection neurons (PNs) are defined by long axons that travel from their origin in the spinal cord to the brain where they relay sensory information from the body. The existence and function of a substantial axon collateral network, also arising from PNs and remaining within the spinal cord, is less well appreciated. Here we use a retrograde viral transduction strategy to characterise a novel subpopulation of deep dorsal horn spinoparabrachial neurons. Brainbow assisted analysis confirmed that virally labelled PN cell bodies formed a discrete cell column in the lateral part of Lamina V (LVlat) and the adjoining white matter. These PNs exhibited large dendritic territories biased to regions lateral and ventral to the cell body column and extending considerable rostrocaudal distances. Optogenetic activation of LVLat PNs confirmed this population mediates widespread signalling within spinal cord circuits, including activation in the superficial dorsal horn. This signalling was also demonstrated with patch clamp recordings during LVLat PN photostimulation, with a range of direct and indirect connections identified and evidence of a postsynaptic population of inhibitory interneurons. Together, these findings confirm a substantial role for PNs in local spinal sensory processing, as well as relay of sensory signals to the brain.
Collapse
Affiliation(s)
- Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| | - Kelly M Smith
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mark A Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
4
|
Worthy AE, Anderson JT, Lane AR, Gomez-Perez L, Wang AA, Griffith RW, Rivard AF, Bikoff JB, Alvarez FJ. Spinal V1 inhibitory interneuron clades differ in birthdate, projections to motoneurons, and heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569270. [PMID: 38076820 PMCID: PMC10705425 DOI: 10.1101/2023.11.29.569270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets according to neurogenesis timing, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Birthdate delineates two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8) V1 clades, showing that sequential neurogenesis produces different V1 subsets. Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression is positioned near the lateral motor column and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins. SIGNIFICANCE STATEMENT The complexity of spinal interneuron diversity and circuit organization represents a challenge to understand neural control of movement in normal adults as well as during motor development and in disease. Inhibitory interneurons are a core element of these spinal circuits. V1 interneurons comprise the largest group of inhibitory interneurons in the ventral horn, and their organization remains unclear. Here we present a comprehensive examination of V1 subtypes according to neurogenesis, placement in spinal motor circuits, and motoneuron synaptic targeting. V1 diversity increases during evolution from axial-swimming fishes to limb-based mammalian terrestrial locomotion. This increased diversity is reflected in the size and heterogeneity of the Foxp2-V1 clade, a group closely associated with limb motor pools. We show that Foxp2-V1 interneurons establish the densest direct inhibitory input to motoneurons, especially on cell bodies. These findings are particularly significant because recent studies have shown that motor neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) affect inhibitory V1 synapses on motoneuron cell bodies and Foxp2-V1 interneurons themselves in the earliest stages of pathology.
Collapse
|
5
|
Zamani W, Rastgar S, Hedayati A, Tajari M, Ghiasvand Z. Solvent-thermal approach of MIL-100(Fe)/Cygnea/Fe 3O 4/TiO 2 nanocomposite for the treatment of lead from oil refinery wastewater (ORW) under UVA light. Sci Rep 2024; 14:4476. [PMID: 38396129 PMCID: PMC10891111 DOI: 10.1038/s41598-024-54897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
The main purpose of this research endeavor is to reduce lead concentrations in the wastewater of an oil refinery through the utilization of a material composed of oyster shell waste (MIL-100(Fe)/Cygnea/Fe3O4/TiO2. Initially, iron oxide nanoparticles (Fe3O4) were synthesized via solvent-thermal synthesis. It was subsequently coated layer by layer with the organic-metallic framework MIL-100 (Fe) using the core-shell method. Additionally, the solvent-thermal method was utilized to integrate TiO2 nanoparticles into the magnetic organic-metallic framework's structure. Varieties of analytical analysis were utilized to investigate the physical and chemical properties of the synthetic final photocatalyst. Nitrogen adsorption and desorption technique (BET), scanning electron microscopy (SEM), scanning electron diffraction pattern (XRD), and transmission electron microscopy (TEM). Following the characterization of the final photocatalyst, the physical and chemical properties of the nanoparticles synthesized in each step, several primary factors that significantly affect the removal efficiency in the advanced oxidation system (AOPs) were examined. These variables consist of pH, photocatalyst dosage, lead concentration, and reaction temperature. The synthetic photocatalyst showed optimal performance in the removal of lead from petroleum wastewater under the following conditions: 35 °C temperature, pH of 3, 0.04 g/l photocatalyst dosage, and 100 mg/l wastewater concentration. Additionally, the photocatalyst maintained a significant level of reusability after undergoing five cycles. The findings of the study revealed that the photocatalyst dosage and pH were the most influential factors in the effectiveness of lead removal. According to optimal conditions, lead removal reached a maximum of 96%. The results of this investigation showed that the synthetic photocatalyst, when exposed to UVA light, exhibited an extraordinary capacity for lead removal.
Collapse
Affiliation(s)
- Wahid Zamani
- Department of Environmental Science, Faculty of Natural Resources, University of Kurdistan, Sanandaj, 15175-66177, Iran.
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, 49189-43464, Iran.
| | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, 49189-43464, Iran
| | - Mohsen Tajari
- Department of Fisheries, Bandargaz Branch, Islamic Azad University, Bandargaz, 48731-97179, Iran
| | - Zahra Ghiasvand
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Halifax, Canada
| |
Collapse
|
6
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|