1
|
Anand T, Patterson K, Rowe JB, Cope TE. Drawing from name in semantic dementia reveals graded object knowledge representations in anterior temporal lobe. Mem Cognit 2025; 53:428-437. [PMID: 38777996 PMCID: PMC11779775 DOI: 10.3758/s13421-024-01578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Semantic dementia (SD) is characterized by progressive impairment in conceptual knowledge due to anterior temporal lobe (ATL) neurodegeneration. Extended neuropsychological assessments can quantitatively demonstrate the semantic impairment, but this graded loss of knowledge can also be readily observed in the qualitative observation of patients' recall of single concepts. Here, we present the results of a simple task of object drawing-from-name, by patients with SD (N = 19), who have isolated atrophy of the ATL bilaterally. Both cross-sectionally and longitudinally, patient drawings demonstrated a pattern of degradation in which rare and distinctive features (such as the hump on a camel) were lost earliest in disease course, and there was an increase in the intrusion of prototypical features (such as the typical small ears of most mammals on an elephant) with more advanced disease. Crucially, patient drawings showed a continuum of conceptual knowledge loss rather than a binary 'present' or 'absent' state. Overall, we demonstrate that qualitative evaluation of line drawings of animals and objects provides fascinating insights into the transmodal semantic deficit in SD. Our results are consistent with a distributed-plus-hub model of semantic memory. The graded nature of the deficit in semantic performance observed in our subset of longitudinally observed patients suggests that the temporal lobe binds feature-based semantic attributes in its central convergence zone.
Collapse
Affiliation(s)
- Tanmay Anand
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - Karalyn Patterson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - James B Rowe
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Thomas E Cope
- Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK.
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK.
| |
Collapse
|
2
|
Dial HR, Tessmer R, Henry ML. Speech perception and language comprehension in primary progressive aphasia. Cortex 2024; 181:272-289. [PMID: 39577248 DOI: 10.1016/j.cortex.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Primary progressive aphasia (PPA) is a neurodegenerative disorder characterized by progressive loss of speech and language. Although speech perception and language comprehension deficits are observed in individuals with PPA, these deficits have been understudied relative to production deficits. Recent work has examined receptive language processing at sublexical, lexical, and semantic levels in PPA; however, systematic investigation of these levels of processing within a single PPA cohort is lacking. The current study sought to fill this gap. Individuals with logopenic, nonfluent, and semantic variants of PPA and healthy, age-matched controls completed minimal pairs syllable discrimination, auditory lexical decision, and picture-word verification tasks to assess sublexical, lexical, and semantic processing. Distinct profiles were observed across PPA variants. Individuals with logopenic variant PPA had impaired performance on auditory lexical decision and picture-word verification tasks, with a trend toward impaired performance on the syllable discrimination task. Individuals with nonfluent and semantic variant PPA had impaired performance only on auditory lexical decision and picture-word verification. Evaluation of the types of errors made on the picture-word verification task (phonological and semantic) provided further insight into levels of deficits across the variants. Overall, the results indicate deficits in receptive processing at the lexical-phonological, lexical-semantic, and semantic levels in logopenic variant PPA, with a trend toward impaired sublexical processing. Deficits were observed at the lexical-semantic and semantic levels in semantic variant PPA, and lexical-phonological deficits were observed in nonfluent PPA, likely reflecting changes both in lexical-phonological processing as well as changes in predictive coding during perception. This study provides a more precise characterization of the linguistic profile of each PPA subtype for speech perception and language comprehension. The constellation of deficits observed in each PPA subtype holds promise for differential diagnosis and for informing models of intervention.
Collapse
Affiliation(s)
- Heather R Dial
- Department of Communication Sciences and Disorders, University of Houston, Houston, TX, USA; Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, USA.
| | - Rachel Tessmer
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, USA; Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Maya L Henry
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| |
Collapse
|
3
|
Robson H, Thomasson H, Upton E, Leff AP, Davis MH. The impact of speech rhythm and rate on comprehension in aphasia. Cortex 2024; 180:126-146. [PMID: 39427491 DOI: 10.1016/j.cortex.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 09/01/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Speech comprehension impairment in post-stroke aphasia is influenced by speech acoustics. This study investigated the impact of speech rhythm (syllabic isochrony) and rate on comprehension in people with aphasia (PWA). Rhythmical speech was hypothesised to support comprehension in PWA by reducing temporal variation, leading to enhanced speech tracking and more appropriate sampling of the speech stream. Speech rate was hypothesised to influence comprehension through auditory and linguistic processing time. METHODS One group of PWA (n = 19) and two groups of control participants (n = 10 and n = 18) performed a sentence-verification. Sentences were presented in two rhythm conditions (natural vs isochronous) and two rate conditions (typical, 3.6 Hz vs slow, 2.6 Hz) in a 2 × 2 factorial design. PWA and one group of controls performed the experiment with clear speech. The second group of controls performed the experiment with perceptually degraded speech. RESULTS D-prime analyses measured capacity to detect incongruent endings. Linear mixed effects models investigated the impact of group, rhythm, rate and clarity on d-prime scores. Control participants were negatively affected by isochronous rhythm in comparison to natural rhythm, likely due to alteration in linguistic cues. This negative impact remained or was exacerbated in control participants presented with degraded speech. In comparison, PWA were less affected by isochronous rhythm, despite producing d-prime scores matched to the degraded speech control group. Speech rate affected all groups, but only in interactions with rhythm, indicating that slow-rate isochronous speech was more comprehendible than typical-rate isochronous speech. CONCLUSIONS The comprehension network in PWA interacts differently with speech rhythm. Rhythmical speech may support acoustic speech tracking by enhancing predictability and ameliorate the detrimental impact of atypical rhythm on linguistic cues. Alternatively, reduced temporal prediction in aphasia may limit the impact of deviation from natural temporal structure. Reduction of speech rate below the typical range may not benefit comprehension in PWA.
Collapse
Affiliation(s)
- Holly Robson
- Language and Cognition, Psychology and Language Sciences, University College London, London, UK.
| | - Harriet Thomasson
- Language and Cognition, Psychology and Language Sciences, University College London, London, UK
| | - Emily Upton
- Language and Cognition, Psychology and Language Sciences, University College London, London, UK
| | - Alexander P Leff
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Zoefel B, Abbasi O, Gross J, Kotz SA. Entrainment echoes in the cerebellum. Proc Natl Acad Sci U S A 2024; 121:e2411167121. [PMID: 39136991 PMCID: PMC11348099 DOI: 10.1073/pnas.2411167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024] Open
Abstract
Evidence accumulates that the cerebellum's role in the brain is not restricted to motor functions. Rather, cerebellar activity seems to be crucial for a variety of tasks that rely on precise event timing and prediction. Due to its complex structure and importance in communication, human speech requires a particularly precise and predictive coordination of neural processes to be successfully comprehended. Recent studies proposed that the cerebellum is indeed a major contributor to speech processing, but how this contribution is achieved mechanistically remains poorly understood. The current study aimed to reveal a mechanism underlying cortico-cerebellar coordination and demonstrate its speech-specificity. In a reanalysis of magnetoencephalography data, we found that activity in the cerebellum aligned to rhythmic sequences of noise-vocoded speech, irrespective of its intelligibility. We then tested whether these "entrained" responses persist, and how they interact with other brain regions, when a rhythmic stimulus stopped and temporal predictions had to be updated. We found that only intelligible speech produced sustained rhythmic responses in the cerebellum. During this "entrainment echo," but not during rhythmic speech itself, cerebellar activity was coupled with that in the left inferior frontal gyrus, and specifically at rates corresponding to the preceding stimulus rhythm. This finding represents evidence for specific cerebellum-driven temporal predictions in speech processing and their relay to cortical regions.
Collapse
Affiliation(s)
- Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition, CNRS, Toulouse31100, France
- Université Paul Sabatier Toulouse III, Toulouse31400, France
| | - Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster48149, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster48149, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster48149, Germany
| | - Sonja A. Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229, the Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
5
|
Nourski KV, Steinschneider M, Rhone AE, Dappen ER, Kawasaki H, Howard MA. Processing of auditory novelty in human cortex during a semantic categorization task. Hear Res 2024; 444:108972. [PMID: 38359485 PMCID: PMC10984345 DOI: 10.1016/j.heares.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Auditory semantic novelty - a new meaningful sound in the context of a predictable acoustical environment - can probe neural circuits involved in language processing. Aberrant novelty detection is a feature of many neuropsychiatric disorders. This large-scale human intracranial electrophysiology study examined the spatial distribution of gamma and alpha power and auditory evoked potentials (AEP) associated with responses to unexpected words during performance of semantic categorization tasks. Participants were neurosurgical patients undergoing monitoring for medically intractable epilepsy. Each task included repeatedly presented monosyllabic words from different talkers ("common") and ten words presented only once ("novel"). Targets were words belonging to a specific semantic category. Novelty effects were defined as differences between neural responses to novel and common words. Novelty increased task difficulty and was associated with augmented gamma, suppressed alpha power, and AEP differences broadly distributed across the cortex. Gamma novelty effect had the highest prevalence in planum temporale, posterior superior temporal gyrus (STG) and pars triangularis of the inferior frontal gyrus; alpha in anterolateral Heschl's gyrus (HG), anterior STG and middle anterior cingulate cortex; AEP in posteromedial HG, lower bank of the superior temporal sulcus, and planum polare. Gamma novelty effect had a higher prevalence in dorsal than ventral auditory-related areas. Novelty effects were more pronounced in the left hemisphere. Better novel target detection was associated with reduced gamma novelty effect within auditory cortex and enhanced gamma effect within prefrontal and sensorimotor cortex. Alpha and AEP novelty effects were generally more prevalent in better performing participants. Multiple areas, including auditory cortex on the superior temporal plane, featured AEP novelty effect within the time frame of P3a and N400 scalp-recorded novelty-related potentials. This work provides a detailed account of auditory novelty in a paradigm that directly examined brain regions associated with semantic processing. Future studies may aid in the development of objective measures to assess the integrity of semantic novelty processing in clinical populations.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States.
| | - Mitchell Steinschneider
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States; Departments of Neurology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Emily R Dappen
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
6
|
Wang J, Wang Y, Ou Q, Yang S, Jing J, Fang J. Computer gaming alters resting-state brain networks, enhancing cognitive and fluid intelligence in players: evidence from brain imaging-derived phenotypes-wide Mendelian randomization. Cereb Cortex 2024; 34:bhae061. [PMID: 38436466 DOI: 10.1093/cercor/bhae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
The debate on whether computer gaming enhances players' cognitive function is an ongoing and contentious issue. Aiming to delve into the potential impacts of computer gaming on the players' cognitive function, we embarked on a brain imaging-derived phenotypes (IDPs)-wide Mendelian randomization (MR) study, utilizing publicly available data from a European population. Our findings indicate that computer gaming has a positive impact on fluid intelligence (odds ratio [OR] = 6.264, P = 4.361 × 10-10, 95% confidence interval [CI] 3.520-11.147) and cognitive function (OR = 3.322, P = 0.002, 95% CI 1.563-7.062). Out of the 3062 brain IDPs analyzed, only one phenotype, IDP NET100 0378, was significantly influenced by computer gaming (OR = 4.697, P = 1.10 × 10-5, 95% CI 2.357-9.361). Further MR analysis suggested that alterations in the IDP NET100 0378 caused by computer gaming may be a potential factor affecting fluid intelligence (OR = 1.076, P = 0.041, 95% CI 1.003-1.153). Our MR study lends support to the notion that computer gaming can facilitate the development of players' fluid intelligence by enhancing the connectivity between the motor cortex in the resting-state brain and key regions such as the left dorsolateral prefrontal cortex and the language center.
Collapse
Affiliation(s)
- Jiadong Wang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, 50 Huzhou Street, Hangzhou 310015, China
| | - Yu Wang
- Department of Clinical Medicine, The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Street, Hangzhou 310053, China
| | - Qian Ou
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, 866 Yvhangtang Street, Hangzhou 310018, China
| | - Sengze Yang
- School of Economics and Management, Harbin University of Science and Technology, 4 Linyuan Street, Harbin 150080, China
| | - Jiajie Jing
- Department of Clinical Medicine, Hangzhou City University School of Medicine, 50 Huzhou Street, Hangzhou 310015, China
| | - Jiaqi Fang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, 50 Huzhou Street, Hangzhou 310015, China
| |
Collapse
|
7
|
Tolkacheva V, Brownsett SLE, McMahon KL, de Zubicaray GI. Perceiving and misperceiving speech: lexical and sublexical processing in the superior temporal lobes. Cereb Cortex 2024; 34:bhae087. [PMID: 38494418 PMCID: PMC10944697 DOI: 10.1093/cercor/bhae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Listeners can use prior knowledge to predict the content of noisy speech signals, enhancing perception. However, this process can also elicit misperceptions. For the first time, we employed a prime-probe paradigm and transcranial magnetic stimulation to investigate causal roles for the left and right posterior superior temporal gyri (pSTG) in the perception and misperception of degraded speech. Listeners were presented with spectrotemporally degraded probe sentences preceded by a clear prime. To produce misperceptions, we created partially mismatched pseudo-sentence probes via homophonic nonword transformations (e.g. The little girl was excited to lose her first tooth-Tha fittle girmn wam expited du roos har derst cooth). Compared to a control site (vertex), inhibitory stimulation of the left pSTG selectively disrupted priming of real but not pseudo-sentences. Conversely, inhibitory stimulation of the right pSTG enhanced priming of misperceptions with pseudo-sentences, but did not influence perception of real sentences. These results indicate qualitatively different causal roles for the left and right pSTG in perceiving degraded speech, supporting bilateral models that propose engagement of the right pSTG in sublexical processing.
Collapse
Affiliation(s)
- Valeriya Tolkacheva
- Queensland University of Technology, School of Psychology and Counselling, O Block, Kelvin Grove, Queensland, 4059, Australia
| | - Sonia L E Brownsett
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, University of Queensland, Surgical Treatment and Rehabilitation Services, Herston, Queensland, 4006, Australia
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Melbourne, Health Sciences Building 1, 1 Kingsbury Drive, Bundoora, Victoria, 3086, Australia
| | - Katie L McMahon
- Herston Imaging Research Facility, Royal Brisbane & Women’s Hospital, Building 71/918, Royal Brisbane & Women’s Hospital, Herston, Queensland, 4006, Australia
- Queensland University of Technology, School of Clinical Sciences and Centre for Biomedical Technologies, 60 Musk Avenue, Kelvin Grove, Queensland, 4059, Australia
| | - Greig I de Zubicaray
- Queensland University of Technology, School of Psychology and Counselling, O Block, Kelvin Grove, Queensland, 4059, Australia
| |
Collapse
|
8
|
Wang K, Fang Y, Guo Q, Shen L, Chen Q. Superior Attentional Efficiency of Auditory Cue via the Ventral Auditory-thalamic Pathway. J Cogn Neurosci 2024; 36:303-326. [PMID: 38010315 DOI: 10.1162/jocn_a_02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Auditory commands are often executed more efficiently than visual commands. However, empirical evidence on the underlying behavioral and neural mechanisms remains scarce. In two experiments, we manipulated the delivery modality of informative cues and the prediction violation effect and found consistently enhanced RT benefits for the matched auditory cues compared with the matched visual cues. At the neural level, when the bottom-up perceptual input matched the prior prediction induced by the auditory cue, the auditory-thalamic pathway was significantly activated. Moreover, the stronger the auditory-thalamic connectivity, the higher the behavioral benefits of the matched auditory cue. When the bottom-up input violated the prior prediction induced by the auditory cue, the ventral auditory pathway was specifically involved. Moreover, the stronger the ventral auditory-prefrontal connectivity, the larger the behavioral costs caused by the violation of the auditory cue. In addition, the dorsal frontoparietal network showed a supramodal function in reacting to the violation of informative cues irrespective of the delivery modality of the cue. Taken together, the results reveal novel behavioral and neural evidence that the superior efficiency of the auditory cue is twofold: The auditory-thalamic pathway is associated with improvements in task performance when the bottom-up input matches the auditory cue, whereas the ventral auditory-prefrontal pathway is involved when the auditory cue is violated.
Collapse
Affiliation(s)
- Ke Wang
- South China Normal University, Guangzhou, China
| | - Ying Fang
- South China Normal University, Guangzhou, China
| | - Qiang Guo
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lu Shen
- South China Normal University, Guangzhou, China
| | - Qi Chen
- South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Kocsis Z, Jenison RL, Taylor PN, Calmus RM, McMurray B, Rhone AE, Sarrett ME, Deifelt Streese C, Kikuchi Y, Gander PE, Berger JI, Kovach CK, Choi I, Greenlee JD, Kawasaki H, Cope TE, Griffiths TD, Howard MA, Petkov CI. Immediate neural impact and incomplete compensation after semantic hub disconnection. Nat Commun 2023; 14:6264. [PMID: 37805497 PMCID: PMC10560235 DOI: 10.1038/s41467-023-42088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.
Collapse
Affiliation(s)
- Zsuzsanna Kocsis
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Rick L Jenison
- Departments of Neuroscience and Psychology, University of Wisconsin, Madison, WI, USA
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Ryan M Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Bob McMurray
- Department of Psychological and Brain Science, University of Iowa, Iowa City, IA, USA
| | - Ariane E Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | | | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | | | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Thomas E Cope
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|