1
|
Zhou X, Li R, Lai M, Lai C. Exploring molecular and cellular mechanisms of Pre-Metastatic niche in renal cell carcinoma. Mol Cancer 2025; 24:121. [PMID: 40264130 PMCID: PMC12012986 DOI: 10.1186/s12943-025-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Renal cell carcinoma (RCC) is among the most frequently occurring types of cancer, and its metastasis is a major contributor to its elevated mortality. Before the primary tumor metastasizes to secondary or distant organs, it remodels the microenvironment of these sites, creating a pre-metastatic niche (PMN) conducive to the colonization and growth of metastatic tumors. RCC releases a variety of biomolecules that induce angiogenesis, alter vascular permeability, modulate immune cells to create an immunosuppressive microenvironment, affect extracellular matrix remodeling and metabolic reprogramming, and determine the organotropism of metastasis through different signaling pathways. This review summarizes the principal processes and mechanisms underlying the formation of the premetastatic niche in RCC. Additionally, we emphasize the significance and potential of targeting PMNs for the prevention and treatment of tumor metastasis in future therapeutic approaches. Finally, we summarized the currently potential targeted strategies for detecting and treating PMN in RCC and provide a roadmap for further in-depth studies on PMN in RCC.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Pathology, and Department of Pathology Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruirui Li
- Institute of Immunology, Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Maode Lai
- Department of Pathology, and Department of Pathology Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Xiao G, Wang X, Xu Z, Liu Y, Jing J. Lung-specific metastasis: the coevolution of tumor cells and lung microenvironment. Mol Cancer 2025; 24:118. [PMID: 40241074 PMCID: PMC12001740 DOI: 10.1186/s12943-025-02318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
The vast majority of cancer-related deaths are attributed to metastasis. The lung, being a common site for cancer metastasis, is highly prone to being a target for multiple cancer types and causes a heavy disease burden. Accumulating evidence has demonstrated that tumor metastasis necessitates continuous interactions between tumor cells and distant metastatic niches. Nevertheless, a comprehensive elucidation of the underlying mechanisms governing lung-specific metastasis still poses a formidable challenge. In this review, we depict the lung susceptibility and the molecular profiles of tumors with the potential for lung metastasis. Under the conceptual framework of "Reciprocal Tumor-Lung Metastatic Symbiosis" (RTLMS), we mechanistically delineate the bidirectional regulatory dynamics and coevolutionary adaptation between tumor cells and distal pulmonary niches during lung-specific metastasis, including the induction of pre-metastatic-niches, positive responses of the lung, tumor colonization, dormancy, and reawakening. An enhanced understanding of the latest mechanisms is essential for developing targeted strategies to counteract lung-specific metastasis.
Collapse
Affiliation(s)
- Guixiu Xiao
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinmin Wang
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Zihan Xu
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jing Jing
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Diop M, Davidson BR, Fragiadakis GK, Sirota M, Gaudillière B, Combes AJ. Single-cell omics technologies - Fundamentals on how to create single-cell looking glasses for reproductive health. Am J Obstet Gynecol 2025; 232:S1-S20. [PMID: 40253074 PMCID: PMC12090843 DOI: 10.1016/j.ajog.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 04/21/2025]
Abstract
Over the last decade, in line with the goals of precision medicine to offer individualized patient care, various single-cell technologies measuring gene and proteomic expression in various tissues have rapidly advanced to study health and disease at the single cell level. Precisely understanding cell composition, position within tissues, signaling pathways, and communication can reveal insights into disease mechanisms and systemic changes during development, pregnancy, and gynecologic disorders across the lifespan. Single-cell technologies dissect the complex cellular compositions of reproductive tract tissues, providing insights into mechanisms behind reproductive tract dysfunction which impact wellness and quality of life. These technologies aim to understand basic tissue and organ functions and, clinically, to develop novel diagnostics, early disease biomarkers, and cell-targeted therapies for currently suboptimally-treated disorders. Increasingly, they are applied to pregnancy and pregnancy disorders, gynecologic malignancies, and uterine and ovarian physiology and aging, which are discussed in more detail in manuscripts in this special issue of AJOG. Here, we review recent applications of single-cell technologies to the study of gynecologic disorders and systemic biological adaptations during fetal development, pregnancy, and across a woman's lifespan. We discuss sequencing- and proteomic-based single-cell methods, as well as spatial transcriptomics and high-dimensional proteomic imaging, describing each technology's mechanism, workflow, quality control, and highlighting specific benefits, drawbacks, and utility in the context of reproductive medicine. We consider analytical methods for the high-dimensional single-cell data generated, highlighting statistical constraints and recent computational techniques for downstream clinical translation. Overall, current and evolving single-cell "looking glasses", or perspectives, have the potential to transform fundamental understanding of women's health and reproductive disorders and alter the trajectory of clinical practice and patient outcomes in the future.
Collapse
Affiliation(s)
- Maïgane Diop
- Program in Immunology, Stanford University School of Medicine, Stanford, CA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA
| | | | - Gabriela K Fragiadakis
- UCSF CoLabs, University of California, San Francisco, CA; Bakar ImmunoX Initiative, University of California, San Francisco, CA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA.
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA; Department of Pediatrics, University of California, San Francisco, CA.
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA.
| | - Alexis J Combes
- UCSF CoLabs, University of California, San Francisco, CA; Department of Pathology, University of California, San Francisco, CA; Bakar ImmunoX Initiative, University of California, San Francisco, CA; Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
4
|
Suman S, Nevala WK, Leontovich AA, Jakub JW, Geng L, McLaughlin SA, Markovic SN. Melanoma-derived cytokines and extracellular vesicles are interlinked with macrophage immunosuppression. Front Mol Biosci 2025; 11:1522717. [PMID: 39911494 PMCID: PMC11794111 DOI: 10.3389/fmolb.2024.1522717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 02/07/2025] Open
Abstract
Cytokines play a crucial role in mediating cell communication within the tumor microenvironment (TME). Tumor-associated macrophages are particularly influential in the regulation of immunosuppressive cytokines, thereby supporting tumor metastasis. The upregulation of Th2 cytokines in cancer cells is recognized for its involvement in suppressing anticancer immunity. However, the association between these cytokines and tumor-secreted extracellular vesicles (EVs) remains poorly understood. Therefore, our objective was to investigate the connection between tumor-promoting macrophages and melanoma-derived EVs. The analysis from altered cytokine profile data showed that melanoma-derived EVs upregulate Th2 cytokine expression in naïve macrophages, thereby contributing to the promotion of tumor-supporting functions. Notably, many of these cytokines were also found to be upregulated in metastatic melanoma patients (n = 30) compared to healthy controls (n = 33). Overall, our findings suggest a strong connection between melanoma secretory EVs and the induction of tumor-associated macrophages that facilitates the development of an immunosuppressive TME, supporting melanoma metastasis through regulation at both local and systemic levels.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Wendy K. Nevala
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Alexey A. Leontovich
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - James W. Jakub
- Department of Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Liyi Geng
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | | | | |
Collapse
|
5
|
Xie B, Li J, Lou Y, Chen Q, Yang Y, Zhang R, Liu Z, He L, Cheng Y. Reprogramming macrophage metabolism following myocardial infarction: A neglected piece of a therapeutic opportunity. Int Immunopharmacol 2024; 142:113019. [PMID: 39217876 DOI: 10.1016/j.intimp.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Given the global prevalence of myocardial infarction (MI) as the leading cause of mortality, there is an urgent need to devise novel strategies that target reducing infarct size, accelerating cardiac tissue repair, and preventing detrimental left ventricular (LV) remodeling. Macrophages, as a predominant type of innate immune cells, undergo metabolic reprogramming following MI, resulting in alterations in function and phenotype that significantly impact the progression of MI size and LV remodeling. This article aimed to delineate the characteristics of macrophage metabolites during reprogramming in MI and elucidate their targets and functions in cardioprotection. Furthermore, we summarize the currently proposed regulatory mechanisms of macrophage metabolic reprogramming and identify the regulators derived from endogenous products and natural small molecules. Finally, we discussed the challenges of macrophage metabolic reprogramming in the treatment of MI, with the goal of inspiring further fundamental and clinical research into reprogramming macrophage metabolism and validating its potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Yanmei Lou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Qi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Ying Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| |
Collapse
|
6
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
7
|
Pascual G, Benitah SA. Lipids in the tumor microenvironment: immune modulation and metastasis. Front Oncol 2024; 14:1435480. [PMID: 39391242 PMCID: PMC11464260 DOI: 10.3389/fonc.2024.1435480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Tumor cells can undergo metabolic adaptations that support their growth, invasion, and metastasis, such as reprogramming lipid metabolism to meet their energy demands and to promote survival in harsh microenvironmental conditions, including hypoxia and acidification. Metabolic rewiring, and especially alterations in lipid metabolism, not only fuel tumor progression but also influence immune cell behavior within the tumor microenvironment (TME), leading to immunosuppression and immune evasion. These processes, in turn, may contribute to the metastatic spread of cancer. The diverse metabolic profiles of immune cell subsets, driven by the TME and tumor-derived signals, contribute to the complex immune landscape in tumors, affecting immune cell activation, differentiation, and effector functions. Understanding and targeting metabolic heterogeneity among immune cell subsets will be crucial for developing effective cancer immunotherapies that can overcome immune evasion mechanisms and enhance antitumor immunity.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
Ammarah U, Pereira‐Nunes A, Delfini M, Mazzone M. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer. Mol Oncol 2024; 18:1739-1758. [PMID: 38411356 PMCID: PMC11223613 DOI: 10.1002/1878-0261.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Macrophages are innate immune cells that play key roles during both homeostasis and disease. Depending on the microenvironmental cues sensed in different tissues, macrophages are known to acquire specific phenotypes and exhibit unique features that, ultimately, orchestrate tissue homeostasis, defense, and repair. Within the tumor microenvironment, macrophages are referred to as tumor-associated macrophages (TAMs) and constitute a heterogeneous population. Like their tissue resident counterpart, TAMs are plastic and can switch function and phenotype according to the niche-derived stimuli sensed. While changes in TAM phenotype are known to be accompanied by adaptive alterations in their cell metabolism, it is reported that metabolic reprogramming of macrophages can dictate their activation state and function. In line with these observations, recent research efforts have been focused on defining the metabolic traits of TAM subsets in different tumor malignancies and understanding their role in cancer progression and metastasis formation. This knowledge will pave the way to novel therapeutic strategies tailored to cancer subtype-specific metabolic landscapes. This review outlines the metabolic characteristics of distinct TAM subsets and their implications in tumorigenesis across multiple cancer types.
Collapse
Affiliation(s)
- Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CentreUniversity of TorinoItaly
| | - Andreia Pereira‐Nunes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Marcello Delfini
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| |
Collapse
|
9
|
Saha P, Ettel P, Weichhart T. Leveraging macrophage metabolism for anticancer therapy: opportunities and pitfalls. Trends Pharmacol Sci 2024; 45:335-349. [PMID: 38494408 DOI: 10.1016/j.tips.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.
Collapse
Affiliation(s)
- Piyal Saha
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria.
| |
Collapse
|
10
|
Qian Y, Yin Y, Zheng X, Liu Z, Wang X. Metabolic regulation of tumor-associated macrophage heterogeneity: insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark Res 2024; 12:1. [PMID: 38185636 PMCID: PMC10773124 DOI: 10.1186/s40364-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population that play diverse functions in tumors. Their identity is determined not only by intrinsic factors, such as origins and transcription factors, but also by external signals from the tumor microenvironment (TME), such as inflammatory signals and metabolic reprogramming. Metabolic reprogramming has rendered TAM to exhibit a spectrum of activities ranging from pro-tumorigenic to anti-tumorigenic, closely associated with tumor progression and clinical prognosis. This review implicates the diversity of TAM phenotypes and functions, how this heterogeneity has been re-evaluated with the advent of single-cell technologies, and the impact of TME metabolic reprogramming on TAMs. We also review current therapies targeting TAM metabolism and offer new insights for TAM-dependent anti-tumor immunotherapy by focusing on the critical role of different metabolic programs in TAMs.
Collapse
Affiliation(s)
- Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhaoyuan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|