1
|
Epihova G, Cook R, Andrews TJ. Global changes in the pattern of connectivity in developmental prosopagnosia. Cereb Cortex 2024; 34:bhae435. [PMID: 39514339 PMCID: PMC11546179 DOI: 10.1093/cercor/bhae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Developmental prosopagnosia is a neurodevelopmental condition characterized by difficulties in recognizing the identity of a person from their face. While current theories of the neural basis of developmental prosopagnosia focus on the face processing network, successful recognition of face identities requires broader integration of neural signals across the whole brain. Here, we asked whether disruptions in global functional and structural connectivity contribute to the face recognition difficulties observed in developmental prosopagnosia. We found that the left temporal pole was less functionally connected to the rest of the brain in developmental prosopagnosia. This was driven by weaker contralateral connections to the middle and inferior temporal gyri, as well as to the medial prefrontal cortex. The pattern of global connectivity in the left temporal pole was also disrupted in developmental prosopagnosia. Critically, these changes in global functional connectivity were only evident when participants viewed faces. Structural connectivity analysis revealed localized reductions in connectivity between the left temporal pole and a number of regions, including the fusiform gyrus, inferior temporal gyrus, and orbitofrontal cortex. Our findings underscore the importance of whole-brain integration in supporting typical face recognition and provide evidence that disruptions in connectivity involving the left temporal pole may underlie the characteristic difficulties of developmental prosopagnosia.
Collapse
Affiliation(s)
- Gabriela Epihova
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | - Richard Cook
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Timothy J Andrews
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Ragone E, Tanner J, Jo Y, Zamani Esfahlani F, Faskowitz J, Pope M, Coletta L, Gozzi A, Betzel R. Modular subgraphs in large-scale connectomes underpin spontaneous co-fluctuation events in mouse and human brains. Commun Biol 2024; 7:126. [PMID: 38267534 PMCID: PMC10810083 DOI: 10.1038/s42003-024-05766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of "bursty" dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation.
Collapse
Affiliation(s)
| | - Jacob Tanner
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
| | - Youngheun Jo
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Farnaz Zamani Esfahlani
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Richard Betzel
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA.
| |
Collapse
|