1
|
Leybova L, Biswas A, Sharan R, Trejo BM, Kim K, Soto-Muniz Y, Jones RA, Phillips BK, Devenport D. Radially patterned morphogenesis of murine hair follicle placodes ensures robust epithelial budding. Dev Cell 2024; 59:3272-3289.e5. [PMID: 39413781 PMCID: PMC11652239 DOI: 10.1016/j.devcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/21/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
The bending of simple cellular sheets into complex three-dimensional (3D) forms requires developmental patterning cues to specify where deformations occur, but how positional information directs morphological change is poorly understood. Here, we investigate how morphogen signaling and cell fate diversification contribute to the morphogenesis of murine hair placodes, in which collective cell movements transform radially symmetric primordia into bilaterally symmetric tubes. Through live imaging and 3D volumetric reconstructions, we demonstrate that Wnt and Shh establish radial patterns of cell fate, cell morphology, and movement within developing placodes. Cell fate diversity at different radial positions provides unique and essential contributions to placode morphogenesis. Further, we show that downstream of radial patterning, gradients of classical cadherin expression are required for efficient epithelial rearrangements. Given that the transformation of epithelial discs into 3D tubes is a common morphological motif used to shape diverse organ primordia, mechanisms of radially patterned morphogenesis are likely highly conserved across evolution.
Collapse
Affiliation(s)
- Liliya Leybova
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Research Computing, Princeton University, Princeton, NJ, USA
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brandon M Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Keunho Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yanilka Soto-Muniz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brooke K Phillips
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
2
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
3
|
Gadre P, Markova P, Ebrahimkutty M, Jiang Y, Bouzada FM, Watt FM. Emergence and properties of adult mammalian epidermal stem cells. Dev Biol 2024; 515:129-138. [PMID: 39059680 DOI: 10.1016/j.ydbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this review we discuss how the mammalian interfollicular epidermis forms during development, maintains homeostasis, and is repaired following wounding. Recent studies have provided new insights into the relationship between the stem cell compartment and the differentiating cell layers; the ability of differentiated cells to dedifferentiate into stem cells; and the epigenetic memory of epidermal cells following wounding.
Collapse
Affiliation(s)
- Purna Gadre
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Pavlina Markova
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Yidan Jiang
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Francisco M Bouzada
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Fiona M Watt
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
4
|
Kalyanakrishnan K, Beaudin A, Jetté A, Ghezelbash S, Hotea DI, Chen J, Lefrançois P, Laurin M. ARHGEF3 Regulates Hair Follicle Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612256. [PMID: 39314354 PMCID: PMC11419159 DOI: 10.1101/2024.09.13.612256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During embryogenesis, cells arrange into precise patterns that enable tissues and organs to develop specialized functions. Despite its critical importance, the molecular choreography behind these collective cellular behaviors remains elusive, posing a major challenge in developmental biology and limiting advances in regenerative medicine. By using the mouse hair follicle as a mini-organ system to study the formation of bud-like structures during embryonic development, our work uncovers a crucial role for the Rho GTPase regulator ARHGEF3 in hair follicle morphogenesis. We demonstrate that Arhgef3 expression is upregulated at the onset of hair follicle placode formation. In Arhgef3 knockout animals, we observed defects in placode compaction, leading to impaired hair follicle downgrowth. Through cell culture models, we show that ARHGEF3 promotes F-actin accumulation at the cell cortex and P-cadherin enrichment at cell-cell junctions. Collectively, our study identifies ARHGEF3 as a new regulator of cell shape rearrangements during hair placode morphogenesis, warranting further exploration of its role in other epithelial appendages that arise from similar developmental processes.
Collapse
Affiliation(s)
- Krithika Kalyanakrishnan
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Amy Beaudin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Alexandra Jetté
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Sarah Ghezelbash
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
| | - Diana Ioana Hotea
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801
| | - Philippe Lefrançois
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
- Division of Dermatology, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mélanie Laurin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| |
Collapse
|
5
|
Lee SH, Platt S, Lim CH, Ito M, Myung P. The development of hair follicles and nail. Dev Biol 2024; 513:3-11. [PMID: 38759942 DOI: 10.1016/j.ydbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sarah Platt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Peggy Myung
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Satta JP, Lan Q, Taketo MM, Mikkola ML. Stabilization of Epithelial β-Catenin Compromises Mammary Cell Fate Acquisition and Branching Morphogenesis. J Invest Dermatol 2024; 144:1223-1237.e10. [PMID: 38159590 DOI: 10.1016/j.jid.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
The Wnt/β-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/β-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/β-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial β-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/β-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high β-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of β-catenin, suggesting that the level of epithelial Wnt/β-catenin signaling activity may contribute to the choice between skin appendage identities.
Collapse
Affiliation(s)
- Jyoti Prabha Satta
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Makoto Mark Taketo
- Colon Cancer Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Khatif H, Bazzi H. Generation and characterization of a Dkk4-Cre knock-in mouse line. Genesis 2024; 62:e23532. [PMID: 37435631 DOI: 10.1002/dvg.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Ectodermal appendages in mammals, such as teeth, mammary glands, sweat glands and hair follicles, are generated during embryogenesis through a series of mesenchymal-epithelial interactions. Canonical Wnt signaling and its inhibitors are implicated in the early steps of ectodermal appendage development and patterning. To study the activation dynamics of the Wnt target and inhibitor Dickkopf4 (Dkk4) in ectodermal appendages, we used CRSIPR/Cas9 to generate a Dkk4-Cre knock-in mouse (Mus musculus) line, where the Cre recombinase cDNA replaces the expression of endogenous Dkk4. Using Cre reporters, the Dkk4-Cre activity was evident at the prospective sites of ectodermal appendages, overlapping with the Dkk4 mRNA expression. Unexpectedly, a predominantly mesenchymal cell population in the embryo posterior also showed Dkk4-Cre activity. Lineage-tracing suggested that these cells are likely derived from a few Dkk4-Cre-expressing cells in the epiblast at early gastrulation. Finally, our analyses of Dkk4-Cre-expressing cells in developing hair follicle epithelial placodes revealed intra- and inter-placodal cellular heterogeneity, supporting emerging data on the positional and transcriptional cellular variability in placodes. Collectively, we propose the new Dkk4-Cre knock-in mouse line as a suitable model to study Wnt and DKK4 inhibitor dynamics in early mouse development and ectodermal appendage morphogenesis.
Collapse
Affiliation(s)
- Houda Khatif
- Department of Dermatology and Venereology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Department of Dermatology and Venereology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Johnson MR, Li S, Guerrero-Juarez CF, Miller P, Brack BJ, Mereby SA, Moreno JA, Feigin CY, Gaska J, Rivera-Perez JA, Nie Q, Ploss A, Shvartsman SY, Mallarino R. A multifunctional Wnt regulator underlies the evolution of rodent stripe patterns. Nat Ecol Evol 2023; 7:2143-2159. [PMID: 37813945 PMCID: PMC10839778 DOI: 10.1038/s41559-023-02213-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/27/2023] [Indexed: 10/11/2023]
Abstract
Animal pigment patterns are excellent models to elucidate mechanisms of biological organization. Although theoretical simulations, such as Turing reaction-diffusion systems, recapitulate many animal patterns, they are insufficient to account for those showing a high degree of spatial organization and reproducibility. Here, we study the coat of the African striped mouse (Rhabdomys pumilio) to uncover how periodic stripes form. Combining transcriptomics, mathematical modelling and mouse transgenics, we show that the Wnt modulator Sfrp2 regulates the distribution of hair follicles and establishes an embryonic prepattern that foreshadows pigment stripes. Moreover, by developing in vivo gene editing in striped mice, we find that Sfrp2 knockout is sufficient to alter the stripe pattern. Strikingly, mutants exhibited changes in pigmentation, revealing that Sfrp2 also regulates hair colour. Lastly, through evolutionary analyses, we find that striped mice have evolved lineage-specific changes in regulatory elements surrounding Sfrp2, many of which may be implicated in modulating the expression of this gene. Altogether, our results show that a single factor controls coat pattern formation by acting both as an orienting signalling mechanism and a modulator of pigmentation. More broadly, our work provides insights into how spatial patterns are established in developing embryos and the mechanisms by which phenotypic novelty originates.
Collapse
Affiliation(s)
- Matthew R Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sha Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Christian F Guerrero-Juarez
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Pearson Miller
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Benjamin J Brack
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sarah A Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jorge A Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Charles Y Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jenna Gaska
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|