1
|
Jiang K, Pang X, Li W, Xu X, Yang Y, Shang C, Gao X. Interbacterial warfare in the human gut: insights from Bacteroidales' perspective. Gut Microbes 2025; 17:2473522. [PMID: 40038576 PMCID: PMC11901371 DOI: 10.1080/19490976.2025.2473522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/19/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Competition and cooperation are fundamental to the stability and evolution of ecological communities. The human gut microbiota, a dense and complex microbial ecosystem, plays a critical role in the host's health and disease, with competitive interactions being particularly significant. As a dominant and extensively studied group in the human gut, Bacteroidales serves as a successful model system for understanding these intricate dynamic processes. This review summarizes recent advances in our understanding of the intricate antagonism mechanisms among gut Bacteroidales at the biochemical or molecular-genetic levels, focusing on interference and exploitation competition. We also discuss unresolved questions and suggest strategies for studying the competitive mechanisms of Bacteroidales. The review presented here offers valuable insights into the molecular basis of bacterial antagonism in the human gut and may inform strategies for manipulating the microbiome to benefit human health.
Collapse
Affiliation(s)
- Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinxin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weixun Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoning Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yan Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chengbin Shang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Wang Y, Jiao R, Zhang X, Ren Y, Zhao W, Ye Y. OmpR-mediated activation of the type Vl secretion system drives enhanced acid tolerance in Cronobacter. J Dairy Sci 2025; 108:3390-3403. [PMID: 39890079 DOI: 10.3168/jds.2024-25685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025]
Abstract
Cronobacter (7 species) are prevalent foodborne pathogens with a remarkable capacity to adapt to acidic environments. This resilience enables them to persist in both food matrices and host organisms. Here we investigated the role of the 2-component system response regulator OmpR in the acid tolerance of Cronobacter. Under acid stress, Cronobacter malonaticus demonstrated significantly elevated expression of ompR and type VI secretion system (T6SS) genes, as well as a marked decrease in the survival of OmpR or T6SS structure gene mutants, indicating the pivotal role of OmpR and T6SS in acid tolerance. Notably, OmpR markedly enhanced the T6SS expression by binding specifically to its promoter, and the activated T6SS expedited adaptation to acidic environments and facilitated biofilm formation, thereby aiding Cronobacter's survival under acidic conditions. Moreover, knocking out ompR in 6 additional Cronobacter species resulted in decreased T6SS expression and tolerance to acid stress than their wild-type strains, which further solidifies the widespread nature of the acid tolerance mechanism predicated on the activation of T6SS by OmpR in Cronobacter spp. A comprehensive understanding of the adaptation mechanisms employed by Cronobacter spp. in acidic conditions will provide a theoretical foundation for managing their contamination in acidic food matrices and preventing infection outbreaks in the infant gastrointestinal tract.
Collapse
Affiliation(s)
- Yang Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China; School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Rui Jiao
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Xiyan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Yuwei Ren
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Wenhua Zhao
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China.
| |
Collapse
|
3
|
Chen Z, Mao Y, Song Y, Dou M, Shang K, Yu Z, Ding K, Chen S. Refined egoist: The toxin-antitoxin immune system of T6SS. Microb Pathog 2024; 196:106991. [PMID: 39369755 DOI: 10.1016/j.micpath.2024.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Type VI secretory system (T6SS) is a key regulatory network in the bacterial system, which plays an important role in host-pathogen interactions and maintains cell homeostasis by regulating the release of effector proteins in specific competition. T6SS causes cell lysis or competitive inhibition by delivering effector molecules, such as toxic proteins and nucleic acids, directly from donor bacterial cells to eukaryotic or prokaryotic targets. Additionally, it orchestrates synthesis of immune effectors that counteract toxins thus preventing self-intoxication or antagonistic actions by competing microbes. Even so, the mechanism of toxin-antitoxin regulation in bacteria remains unclear. In response, this review discusses the bacterial T6SS's structure and function and the mechanism behind toxin-antitoxin secretion and the T6SS's expression in order to guide the further exploration of the pathogenic mechanism of the T6SS and the development of novel preparations for reducing and replacing toxins and antitoxins.
Collapse
Affiliation(s)
- Ziduo Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yikai Mao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yinzhou Song
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengxuan Dou
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
4
|
Chiang BH, Vega G, Dunwoody SC, Patnode ML. Bacterial interactions on nutrient-rich surfaces in the gut lumen. Infect Immun 2024; 92:e0048023. [PMID: 38506518 PMCID: PMC11384750 DOI: 10.1128/iai.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
The intestinal lumen is a turbulent, semi-fluid landscape where microbial cells and nutrient-rich particles are distributed with high heterogeneity. Major questions regarding the basic physical structure of this dynamic microbial ecosystem remain unanswered. Most gut microbes are non-motile, and it is unclear how they achieve optimum localization relative to concentrated aggregations of dietary glycans that serve as their primary source of energy. In addition, a random spatial arrangement of cells in this environment is predicted to limit sustained interactions that drive co-evolution of microbial genomes. The ecological consequences of random versus organized microbial localization have the potential to control both the metabolic outputs of the microbiota and the propensity for enteric pathogens to participate in proximity-dependent microbial interactions. Here, we review evidence suggesting that several bacterial species adopt organized spatial arrangements in the gut via adhesion. We highlight examples where localization could contribute to antagonism or metabolic interdependency in nutrient degradation, and we discuss imaging- and sequencing-based technologies that have been used to assess the spatial positions of cells within complex microbial communities.
Collapse
Affiliation(s)
- Bo Huey Chiang
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA
| | - Giovanni Vega
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA
| | - Sarah C. Dunwoody
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Michael L. Patnode
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
5
|
Huang Y, Cao J, Zhu M, Wang Z, Jin Z, Xiong Z. Nontoxigenic Bacteroides fragilis: A double-edged sword. Microbiol Res 2024; 286:127796. [PMID: 38870618 DOI: 10.1016/j.micres.2024.127796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
The contribution of commensal microbes to human health and disease is unknown. Bacteroides fragilis (B. fragilis) is an opportunistic pathogen and a common colonizer of the human gut. Nontoxigenic B. fragilis (NTBF) and enterotoxigenic B. fragilis (ETBF) are two kinds of B. fragilis. NTBF has been shown to affect the host immune system and interact with gut microbes and pathogenic microbes. Previous studies indicated that certain strains of B. fragilis have the potential to serve as probiotics, based on their observed relationship with the immune system. However, several recent studies have shown detrimental effects on the host when beneficial gut bacteria are found in the digestive system or elsewhere. In some pathological conditions, NTBF may have adverse reactions. This paper presents a comprehensive analysis of NTBF ecology from the host-microbe perspective, encompassing molecular disease mechanisms analysis, bacteria-bacteria interaction, bacteria-host interaction, and the intricate ecological context of the gut. Our review provides much-needed insights into the precise application of NTBF.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Cao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziwen Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|