1
|
Ceballos CC, Chadly N, Lowet E, Pena RFO. Interleaved single and bursting spiking resonance in neurons. PLoS Comput Biol 2025; 21:e1013126. [PMID: 40403093 DOI: 10.1371/journal.pcbi.1013126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
Under in vivo conditions, CA1 pyramidal cells from the hippocampus display transitions from single spikes to bursts. It is believed that subthreshold hyperpolarization and depolarization, also known as down and up-states, play a pivotal role in these transitions. Nevertheless, a central impediment to correlating suprathreshold (spiking) and subthreshold activity has been the technical difficulties of this type of recordings, even with widely used calcium imaging or multielectrode recordings. Recent work using voltage imaging with genetically encoded voltage indicators has been able to correlate spiking patterns with subthreshold activity in a variety of CA1 neurons, and recent computational models have been able to capture these transitions. In this work, we used a computational model of a CA1 pyramidal cell to investigate the role of intrinsic conductances and oscillatory patterns in generating down and up-states and their modulation in the transition from single spiking to bursting. Specifically, the emergence of distinct spiking resonances between these two spiking modes that share the same voltage traces in the presence of theta or gamma oscillatory inputs, a phenomenon we call interleaved single and bursting spiking resonance. We noticed that these resonances do not necessarily overlap in frequency or amplitude, underscoring their relevance for providing flexibility to neural processing. We studied the conductance values of three current types that are thought to be critical for the bursting behavior: persistent sodium current (INaP) and its conductance GNaP, delayed rectifier potassium (IKDR) and its conductance GKDR, and hyperpolarization-activated current (Ih) and its conductance Gh. We conclude that the intricate interplay of ionic currents significantly influences the neuronal firing patterns, transitioning from single to burst firing during sustained depolarization. Specifically, the intermediate levels of GNaP and GKDR facilitate spiking resonance at gamma frequency inputs. The resonance characteristics vary between single and burst firing modes, each displaying distinct amplitudes and resonant frequencies. Furthermore, low GNaP and high GKDR values lock bursting to theta frequencies, while high GNaP and low GKDR values lock single spiking to gamma frequencies. Lastly, the duration of quiet intervals plays a crucial role in determining the likelihood of transitioning to either bursting or single spiking modes. We confirmed that the same features were present in previously recorded in vivo voltage-imaging data. Understanding these dynamics provides valuable insights into the fundamental mechanisms underlying neuronal excitability under in vivo conditions.
Collapse
Affiliation(s)
- Cesar C Ceballos
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Nourdin Chadly
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Lowet
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rodrigo F O Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, United States of America
| |
Collapse
|
2
|
Papanikolaou A, Graykowski D, Lee BI, Yang M, Ellingford R, Zünkler J, Bond SA, Rowland JM, Rajani RM, Harris SS, Sharp DJ, Busche MA. Selectively vulnerable deep cortical layer 5/6 fast-spiking interneurons in Alzheimer's disease models in vivo. Neuron 2025:S0896-6273(25)00293-4. [PMID: 40345184 DOI: 10.1016/j.neuron.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/03/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Alzheimer's disease (AD) is initiated by amyloid-beta (Aβ) accumulation in the neocortex; however, the cortical layers and neuronal cell types first susceptible to Aβ remain unknown. Using in vivo two-photon Ca2+ imaging in the visual cortex of AD mouse models, we found that cortical layer 5 neurons displayed abnormally prolonged Ca2+ transients before substantial plaque formation. Neuropixels recordings revealed that these abnormal transients were associated with reduced spiking and impaired visual tuning of parvalbumin (PV)-positive fast-spiking interneurons (FSIs) in layers 5/6, whereas PV-FSIs in superficial layers remained unaffected. These dysfunctions occurred alongside a deep-layer-specific reduction in neuronal pentraxin 2 (NPTX2) within excitatory neurons, decreased GluA4 in PV-FSIs, and fewer excitatory synapses onto PV-FSIs. Notably, NPTX2 overexpression increased excitatory input onto layers 5/6 PV-FSIs and rectified their spiking activity. Thus, our findings reveal an early selective impairment of deep cortical layers 5/6 in AD models and identify deep-layer PV-FSIs as therapeutic targets.
Collapse
Affiliation(s)
| | - David Graykowski
- UK Dementia Research Institute at University College London, London, UK
| | - Byung Il Lee
- UK Dementia Research Institute at University College London, London, UK
| | - Mengke Yang
- UK Dementia Research Institute at University College London, London, UK
| | - Robert Ellingford
- UK Dementia Research Institute at University College London, London, UK
| | - Jana Zünkler
- UK Dementia Research Institute at University College London, London, UK
| | - Suraya A Bond
- UK Dementia Research Institute at University College London, London, UK
| | - James M Rowland
- UK Dementia Research Institute at University College London, London, UK
| | - Rikesh M Rajani
- UK Dementia Research Institute at University College London, London, UK; British Heart Foundation - UK Dementia Research Institute Centre for Vascular Dementia Research at The University of Edinburgh, Edinburgh, UK
| | - Samuel S Harris
- UK Dementia Research Institute at University College London, London, UK
| | - David J Sharp
- UK Dementia Research Institute Care Research & Technology Centre and Department of Brain Sciences, Imperial College London, London, UK
| | - Marc Aurel Busche
- UK Dementia Research Institute at University College London, London, UK; Department of Neurodegenerative Diseases, University Hospital of Geriatric Medicine FELIX PLATTER and University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Harris SS, Ellingford R, Hartmann J, Dasgupta D, Kehring M, Rajani RM, Graykowski D, Quittot N, Sivasankaran D, Commins C, Fan Z, Bond SA, Wolf F, Dupret D, Dolan RJ, Konnerth A, Neef A, Hyman BT, Busche MA. Alzheimer's disease patient-derived high-molecular-weight tau impairs bursting in hippocampal neurons. Cell 2025:S0092-8674(25)00408-8. [PMID: 40300603 DOI: 10.1016/j.cell.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/21/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025]
Abstract
Tau accumulation is closely related to cognitive symptoms in Alzheimer's disease (AD). However, the cellular drivers of tau-dependent decline of memory-based cognition remain elusive. Here, we employed in vivo Neuropixels and patch-clamp recordings in mouse models and demonstrate that tau, independent of β-amyloid, selectively debilitates complex-spike burst firing of CA1 hippocampal neurons, a fundamental cellular mechanism underpinning learning and memory. Impaired bursting was associated with altered hippocampal network activities that are coupled to burst firing patterns (i.e., theta rhythms and high-frequency ripples) and was concurrent with reduced neuronal expression of CaV2.3 calcium channels, which are essential for burst firing in vivo. We subsequently identify soluble high molecular weight (HMW) tau, isolated from human AD brain, as the tau species responsible for suppression of burst firing. These data provide a cellular mechanism for tau-dependent cognitive decline in AD and implicate a rare species of intracellular HMW tau as a therapeutic target.
Collapse
Affiliation(s)
- Samuel S Harris
- UK Dementia Research Institute at University College London, London, UK.
| | - Robert Ellingford
- UK Dementia Research Institute at University College London, London, UK
| | - Jana Hartmann
- UK Dementia Research Institute at University College London, London, UK
| | - Debanjan Dasgupta
- UK Dementia Research Institute at University College London, London, UK
| | - Marten Kehring
- UK Dementia Research Institute at University College London, London, UK
| | - Rikesh M Rajani
- UK Dementia Research Institute at University College London, London, UK; British Heart Foundation - UK Dementia Research Institute Centre for Vascular Dementia Research at The University of Edinburgh, Edinburgh, UK
| | - David Graykowski
- UK Dementia Research Institute at University College London, London, UK
| | - Noé Quittot
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Dhanush Sivasankaran
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Suraya A Bond
- UK Dementia Research Institute at University College London, London, UK
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Neef
- Göttingen Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marc Aurel Busche
- UK Dementia Research Institute at University College London, London, UK; Department of Neurodegenerative Diseases, University Hospital of Geriatric Medicine FELIX PLATTER and University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Xiao X, Yang A, Zhang H, Park D, Wang Y, Szabo B, Boyden ES, Piatkevich KD. Engineering of Genetically Encoded Bright Near-Infrared Fluorescent Voltage Indicator. Int J Mol Sci 2025; 26:1442. [PMID: 40003908 PMCID: PMC11855178 DOI: 10.3390/ijms26041442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Genetically encoded voltage indicators (GEVIs) allow for the cell-type-specific real-time imaging of neuronal membrane potential dynamics, which is essential to understanding neuronal information processing at both cellular and circuit levels. Among GEVIs, near-infrared-shifted GEVIs offer faster kinetics, better tissue penetration, and compatibility with optogenetic tools, enabling all-optical electrophysiology in complex biological contexts. In our previous work, we employed the directed molecular evolution of microbial rhodopsin Archaerhodopsin-3 (Arch-3) in mammalian cells to develop a voltage sensor called Archon1. Archon1 demonstrated excellent membrane localization, signal-to-noise ratio (SNR), sensitivity, kinetics, and photostability, and full compatibility with optogenetic tools. However, Archon1 suffers from low brightness and requires high illumination intensities, which leads to tissue heating and phototoxicity during prolonged imaging. In this study, we aim to improve the brightness of this voltage sensor. We performed random mutation on a bright Archon derivative and identified a novel variant, monArch, which exhibits satisfactory voltage sensitivity (4~5% ΔF/FAP) and a 9-fold increase in basal brightness compared with Archon1. However, it is hindered by suboptimal membrane localization and compromised voltage sensitivity. These challenges underscore the need for continued optimization to achieve an optimal balance of brightness, stability, and functionality in rhodopsin-based voltage sensors.
Collapse
Affiliation(s)
- Xian Xiao
- School of Life Sciences, Westlake University, Hangzhou 310024, China; (X.X.); (H.Z.); (Y.W.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Aimei Yang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; (A.Y.); (D.P.)
| | - Hanbin Zhang
- School of Life Sciences, Westlake University, Hangzhou 310024, China; (X.X.); (H.Z.); (Y.W.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Demian Park
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; (A.Y.); (D.P.)
| | - Yangdong Wang
- School of Life Sciences, Westlake University, Hangzhou 310024, China; (X.X.); (H.Z.); (Y.W.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Balint Szabo
- CellSorter KFT, H-1117 Budapest, Hungary;
- Department of Biological Physics, Eötvös Loránd University (ELTE), H-1053 Budapest, Hungary
| | - Edward S. Boyden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; (A.Y.); (D.P.)
- Howard Hughes Medical Institute, Cambridge, MA 01239, USA
- Center for Neurobiological Engineering, K. Lisa Yang Center for Bionics, MIT, Cambridge, MA 01239, USA
- Department of Media Arts and Sciences, MIT, Cambridge, MA 01239, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 01239, USA
- Department of Biological Engineering, MIT, Cambridge, MA 01239, USA
- Koch Institute, MIT, Cambridge, MA 01239, USA
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou 310024, China; (X.X.); (H.Z.); (Y.W.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
5
|
Mizuta K, Sato M. Multiphoton imaging of hippocampal neural circuits: techniques and biological insights into region-, cell-type-, and pathway-specific functions. NEUROPHOTONICS 2024; 11:033406. [PMID: 38464393 PMCID: PMC10923542 DOI: 10.1117/1.nph.11.3.033406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Significance The function of the hippocampus in behavior and cognition has long been studied primarily through electrophysiological recordings from freely moving rodents. However, the application of optical recording methods, particularly multiphoton fluorescence microscopy, in the last decade or two has dramatically advanced our understanding of hippocampal function. This article provides a comprehensive overview of techniques and biological findings obtained from multiphoton imaging of hippocampal neural circuits. Aim This review aims to summarize and discuss the recent technical advances in multiphoton imaging of hippocampal neural circuits and the accumulated biological knowledge gained through this technology. Approach First, we provide a brief overview of various techniques of multiphoton imaging of the hippocampus and discuss its advantages, drawbacks, and associated key innovations and practices. Then, we review a large body of findings obtained through multiphoton imaging by region (CA1 and dentate gyrus), cell type (pyramidal neurons, inhibitory interneurons, and glial cells), and cellular compartment (dendrite and axon). Results Multiphoton imaging of the hippocampus is primarily performed under head-fixed conditions and can reveal detailed mechanisms of circuit operation owing to its high spatial resolution and specificity. As the hippocampus lies deep below the cortex, its imaging requires elaborate methods. These include imaging cannula implantation, microendoscopy, and the use of long-wavelength light sources. Although many studies have focused on the dorsal CA1 pyramidal cells, studies of other local and inter-areal circuitry elements have also helped provide a more comprehensive picture of the information processing performed by the hippocampal circuits. Imaging of circuit function in mouse models of Alzheimer's disease and other brain disorders such as autism spectrum disorder has also contributed greatly to our understanding of their pathophysiology. Conclusions Multiphoton imaging has revealed much regarding region-, cell-type-, and pathway-specific mechanisms in hippocampal function and dysfunction in health and disease. Future technological advances will allow further illustration of the operating principle of the hippocampal circuits via the large-scale, high-resolution, multimodal, and minimally invasive imaging.
Collapse
Affiliation(s)
- Kotaro Mizuta
- RIKEN BDR, Kobe, Japan
- New York University Abu Dhabi, Department of Biology, Abu Dhabi, United Arab Emirates
| | - Masaaki Sato
- Hokkaido University Graduate School of Medicine, Department of Neuropharmacology, Sapporo, Japan
| |
Collapse
|
6
|
Chen L, Deng Z, Asamoah B, Laughlin MM. Trigeminal nerve direct current stimulation causes sustained increase in neural activity in the rat hippocampus. Brain Stimul 2024; 17:648-659. [PMID: 38740183 PMCID: PMC11983901 DOI: 10.1016/j.brs.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method that can modulate many brain functions including learning and memory. Recent evidence suggests that tDCS memory effects may be caused by co-stimulation of scalp nerves such as the trigeminal nerve (TN), and not the electric field in the brain. The TN gives input to brainstem nuclei, including the locus coeruleus that controls noradrenaline release across brain regions, including hippocampus. However, the effects of TN direct current stimulation (TN-DCS) are currently not well understood. HYPOTHESIS In this study we tested the hypothesis that stimulation of the trigeminal nerve with direct current manipulates hippocampal activity via an LC pathway. METHODS We recorded neural activity in rat hippocampus using multichannel silicon probes. We applied 3 min of 0.25 mA or 1 mA TN-DCS, monitored hippocampal activity for up to 1 h and calculated spikes-rate and spike-field coherence metrics. Subcutaneous injections of xylocaine were used to block TN, while intraperitoneal and intracerebral injection of clonidine were used to block the LC pathway. RESULTS We found that 1 mA TN-DCS caused a significant increase in hippocampal spike-rate lasting 45 min in addition to significant changes in spike-field coherence, while 0.25 mA TN-DCS did not. TN blockage prevented spike-rate increases, confirming effects were not caused by the electric field in the brain. When 1 mA TN-DCS was delivered during clonidine blockage no increase in spike-rate was observed, suggesting an important role for the LC-noradrenergic pathway. CONCLUSION These results support our hypothesis and provide a neural basis to understand the tDCS TN co-stimulation mechanism. TN-DCS emerges as an important tool to potentially modulate learning and memory.
Collapse
Affiliation(s)
- Liyi Chen
- Exp ORL, Department of Neurosciences, The Leuven Brain Institute, KU Leuven, Belgium
| | - Zhengdao Deng
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Belgium
| | - Boateng Asamoah
- Exp ORL, Department of Neurosciences, The Leuven Brain Institute, KU Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neurosciences, The Leuven Brain Institute, KU Leuven, Belgium.
| |
Collapse
|
7
|
Chen L, Deng Z, Asamoah B, Laughlin MM. Trigeminal nerve direct current stimulation causes sustained increase in neural activity in the rat hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571341. [PMID: 38168241 PMCID: PMC10760027 DOI: 10.1101/2023.12.12.571341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method that can modulate many brain functions including learning and memory. Recent evidence suggests that tDCS memory effects may be caused by co-stimulation of scalp nerves such as the trigeminal nerve (TN), and not the electric field in the brain. The TN gives input to brainstem nuclei, including the locus coeruleus that controls noradrenaline release across brain regions, including hippocampus. However, the effects of TN direct current stimulation (TN-DCS) are currently not well understood. In this study we hypothesized that TN-DCS manipulates hippocampal activity via an LC-noradrenergic bottom-up pathway. We recorded neural activity in rat hippocampus using multichannel silicon probes. We applied 3 minutes of 0.25 mA or 1 mA TN-DCS, monitored hippocampal activity for up to 1 hour and calculated spikes-rate and spike-field coherence metrics. Subcutaneous injections of xylocaine were used to block TN and intraperitoneal injection of clonidine to block the LC pathway. We found that 1 mA TN-DCS caused a significant increase in hippocampal spike-rate lasting 45 minutes in addition to significant changes in spike-field coherence, while 0.25 mA TN-DCS did not. TN blockage prevented spike-rate increases, confirming effects were not caused by the electric field in the brain. When 1 mA TN-DCS was delivered during clonidine blockage no increase in spike-rate was observed, suggesting an important role for the LC-noradrenergic pathway. These results provide a neural basis to support a tDCS TN co-stimulation mechanism. TN-DCS emerges as an important tool to potentially modulate learning and memory. Highlights Trigeminal nerve direct current stimulation (TN-DCS) boosts hippocampal spike ratesTN-DCS alters spike-field coherence in theta and gamma bands across the hippocampus.Blockade experiments indicate that TN-DCS modulated hippocampal activity via the LC-noradrenergic pathway.TN-DCS emerges as a potential tool for memory manipulation. Figure Graphic Abstract
Collapse
|
8
|
Bordoni B, Escher AR. Rethinking the Origin of the Primary Respiratory Mechanism. Cureus 2023; 15:e46527. [PMID: 37808591 PMCID: PMC10552882 DOI: 10.7759/cureus.46527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
Spheno-occipital synchondrosis (SOS) is the joint regarded as the most important foundation for understanding cranial osteopathy and craniosacral therapy. SOS is the origin of the primary respiratory mechanism (PRM), a movement between the posterior surface of the body of the sphenoid bone and the anterior surface of the base of the occipital bone. From the PRM perspective, an alteration of the position between the two bone surfaces would create cranial and/or craniosacral dysfunction. These positional alterations of the SOS (in adults and children) would determine specific and schematical movements of the bones of the entire skull, whose movements are recognizable by palpation by trained operators. PRM expression is influenced by other elements, such as movement of the cranial bones, inherent movement of the central nervous system, cyclic movement of cerebrospinal fluid (CSF), mechanical tension of the cranial meninges, and passive movement of the sacral bone between the iliac bones. The article reviews the most up-to-date information on the evolution of cranial sutures/joints and meninges in adulthood, the fluctuations of the CSF, brain, and spinal mass movements. Research should reconsider the motivations that induce the operator to discriminate the palpable cranial rhythmic impulse, and probably, to rethink new cranial dysfunctional patterns.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
9
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Roles of Potassium and Calcium Currents in the Bistable Firing Transition. Brain Sci 2023; 13:1347. [PMID: 37759949 PMCID: PMC10527161 DOI: 10.3390/brainsci13091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking (RS) cells with frequency adaptation and do not exhibit bursts in current-clamp experiments (in vitro). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings (gsyn) and external current inputs (I). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to the bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold (IL) and low-threshold (IT) ion channels play a role in increasing and decreasing the parameter conditions (gsyn and I) in which bistable dynamics occur, respectively. For high values of IL conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance IT increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S. Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil
| | | | - Diogo L. M. Souza
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Conrado F. Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Enrique C. Gabrick
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Lucas E. Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - José D. Szezech
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Antonio M. Batista
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Iberê L. Caldas
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Rodrigo F. O. Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Role of Potassium and Calcium Currents in the Bistable Firing Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553625. [PMID: 37645875 PMCID: PMC10462112 DOI: 10.1101/2023.08.16.553625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slowwave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking cells (RS) with frequency adaptation and do not exhibit bursts in current-clamp experiments ( in vitro ). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings ( g syn ) and external current inputs ( I ). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold ( I L ) and low-threshold ( I T ) ion channels play a role in increasing and decreasing the parameter conditions ( g syn and I ) in which bistable dynamics occur, respectively. For high values of I L conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance I T increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, 09606-045 São Bernardo do Campo, SP, Brazil
| | | | - Diogo L M Souza
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Conrado F Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Enrique C Gabrick
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Lucas E Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - José D Szezech
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Antonio M Batista
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Institute of Physics, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, New York, USA
| | - Rodrigo F O Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|