1
|
Bounds HA, Adesnik H. Network influence determines the impact of cortical ensembles on stimulus detection. Neuron 2025:S0896-6273(25)00306-X. [PMID: 40378835 DOI: 10.1016/j.neuron.2025.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/23/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025]
Abstract
Causally connecting neural activity patterns to behavioral decisions is essential to understand the neural code but requires direct perturbation of the pattern of interest with high specificity. We combined two-photon imaging and cellular-resolution holographic optogenetic photostimulation to causally test how neural activity in the mouse visual cortex is read out to detect visual stimuli. Contrary to expectations, targeted activation of visually sensitive neural ensembles did not preferentially modify behavior compared with targeting randomly selected ensembles. Instead, an activated ensemble's effect on local network activity was the main predictor of its impact on perception. This suggests that downstream regions summate visual cortex activity without preferentially weighting more informative neurons, a notion confirmed by analyzing the impact of photostimulation on decoding models of neural activity. This work challenges conventional notions for how sensory representations mediate perception and demonstrates that perturbing activity is essential to determine which features of neural activity drive behavior.
Collapse
Affiliation(s)
- Hayley A Bounds
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - Hillel Adesnik
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, Berkeley, CA, USA.
| |
Collapse
|
2
|
Waters J. A large field of view 2- and 3-photon microscope. LIGHT, SCIENCE & APPLICATIONS 2025; 14:106. [PMID: 40016184 PMCID: PMC11868528 DOI: 10.1038/s41377-025-01780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A new multiphoton fluorescence microscope has been developed, offering cellular resolution across a large field of view deep within biological tissues. This opens new possibilities across a range of biological sciences, particularly within neuroscience where optical approaches can reveal signaling in real time throughout an extended network of cells distributed through the brain of an awake, behaving mouse.
Collapse
Affiliation(s)
- Jack Waters
- Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
3
|
Chou CY, Wong HH, Guo C, Boukoulou KE, Huang C, Jannat J, Klimenko T, Li VY, Liang TA, Wu VC, Sjöström PJ. Principles of visual cortex excitatory microcircuit organization. Innovation (N Y) 2025; 6:100735. [PMID: 39872485 PMCID: PMC11763898 DOI: 10.1016/j.xinn.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/13/2024] [Indexed: 01/30/2025] Open
Abstract
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells. Across these cell types, log-normal distribution of synaptic efficacies emerged as a principle. For pyramidal cells, optomapping reproduced the canonical circuit but unexpectedly uncovered that the excitation of basket cells concentrated to layer 5 and that of Martinotti cells dominated in layer 2/3. The excitation of basket cells was stronger and reached farther than the excitation of pyramidal cells, which may promote stability. Short-term plasticity surprisingly depended on cortical layer in addition to target cell. Finally, optomapping revealed an overrepresentation of shared inputs for interconnected layer-6 pyramidal cells. Thus, by resolving the throughput problem, optomapping uncovered hitherto unappreciated principles of V1 structure.
Collapse
Affiliation(s)
- Christina Y.C. Chou
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hovy H.W. Wong
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Connie Guo
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Kiminou E. Boukoulou
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Cleo Huang
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Javid Jannat
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Tal Klimenko
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Vivian Y. Li
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Tasha A. Liang
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Vivian C. Wu
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
4
|
Quintana D, Bounds H, Veit J, Adesnik H. Balanced bidirectional optogenetics reveals the causal impact of cortical temporal dynamics in sensory perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596706. [PMID: 38853943 PMCID: PMC11160799 DOI: 10.1101/2024.05.30.596706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Whether the fast temporal dynamics of neural activity in brain circuits causally drive perception and cognition remains one of most longstanding unresolved questions in neuroscience 1-6 . While some theories posit a 'timing code' in which dynamics on the millisecond timescale is central to brain function, others instead argue that mean firing rates over more extended periods (a 'rate code') carry most of the relevant information. Existing tools, such as optogenetics, can be used to alter temporal structure of neural dynamics 7 , but they invariably change mean firing rates, leaving the interpretation of such experiments ambiguous. Here we developed and validated a new approach based on balanced, bidirectional optogenetics that can alter temporal structure of neural dynamics while mitigating effects on mean activity. Using this new approach, we found that selectively altering cortical temporal dynamics substantially reduced performance in a sensory perceptual task. These results demonstrate that endogenous temporal dynamics in the cortex are causally required for perception and behavior. More generally, this new bidirectional optogenetic approach should be broadly useful for disentangling the causal impact of different timescales of neural dynamics on behavior.
Collapse
|
5
|
Xu S, Xiao X, Manshaii F, Chen J. Injectable Fluorescent Neural Interfaces for Cell-Specific Stimulating and Imaging. NANO LETTERS 2024. [PMID: 38606614 DOI: 10.1021/acs.nanolett.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Building on current explorations in chronic optical neural interfaces, it is essential to address the risk of photothermal damage in traditional optogenetics. By focusing on calcium fluorescence for imaging rather than stimulation, injectable fluorescent neural interfaces significantly minimize photothermal damage and improve the accuracy of neuronal imaging. Key advancements including the use of injectable microelectronics for targeted electrical stimulation and their integration with cell-specific genetically encoded calcium indicators have been discussed. These injectable electronics that allow for post-treatment retrieval offer a minimally invasive solution, enhancing both usability and reliability. Furthermore, the integration of genetically encoded fluorescent calcium indicators with injectable bioelectronics enables precise neuronal recording and imaging of individual neurons. This shift not only minimizes risks such as photothermal conversion but also boosts safety, specificity, and effectiveness of neural imaging. Embracing these advancements represents a significant leap forward in biomedical engineering and neuroscience, paving the way for advanced brain-machine interfaces.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Oldenburg IA, Hendricks WD, Handy G, Shamardani K, Bounds HA, Doiron B, Adesnik H. The logic of recurrent circuits in the primary visual cortex. Nat Neurosci 2024; 27:137-147. [PMID: 38172437 PMCID: PMC10774145 DOI: 10.1038/s41593-023-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity.
Collapse
Affiliation(s)
- Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gregory Handy
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA.
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
- Department of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| | - Kiarash Shamardani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hayley A Bounds
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brent Doiron
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Lees RM, Pichler B, Packer AM. Contribution of optical resolution to the spatial precision of two-photon optogenetic photostimulation in vivo. NEUROPHOTONICS 2024; 11:015006. [PMID: 38322022 PMCID: PMC10846536 DOI: 10.1117/1.nph.11.1.015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Significance Two-photon optogenetics combines nonlinear excitation with noninvasive activation of neurons to enable the manipulation of neural circuits with a high degree of spatial precision. Combined with two-photon population calcium imaging, these approaches comprise a flexible platform for all-optical interrogation of neural circuits. However, a multitude of optical and biological factors dictate the exact precision of this approach in vivo, where it is most usefully applied. Aim We aimed to assess how the optical point spread function (OPSF) contributes to the spatial precision of two-photon photostimulation in neurobiology. Approach We altered the axial spread of the OPSF of the photostimulation beam using a spatial light modulator. Subsequently, calcium imaging was used to monitor the axial spatial precision of two-photon photostimulation of layer 2 neurons in the mouse neocortex. Results We found that optical resolution is not always the limiting factor of the spatial precision of two-photon optogenetic photostimulation and, by doing so, reveal the key factors that must be improved to achieve maximal precision. Conclusions Our results enable future work to focus on the optimal factors by providing key insight from controlled experiments in a manner not previously reported. This research can be applied to advance the state-of-the-art of all-optical interrogation, extending the toolkit for neuroscience research to achieve spatiotemporal precision at the crucial levels in which neural circuits operate.
Collapse
Affiliation(s)
- Robert M. Lees
- Science and Technology Facilities Council, Octopus Imaging Facility, Oxfordshire, United Kingdom
- University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| | - Bruno Pichler
- Independent NeuroScience Services INSS Ltd., East Sussex, United Kingdom
| | - Adam M. Packer
- University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| |
Collapse
|