1
|
Song X, Chen S, Cheng J, Li H, Wu R, Yan M, Wang M, Li J, Jin A, Wang W. Screening and identification Hub genes associated with immune cell infiltration and critical biomarkers in osteosarcoma. Mol Cell Probes 2025:102031. [PMID: 40374042 DOI: 10.1016/j.mcp.2025.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
PURPOSE Osteosarcoma (OS) exhibits limited immune cell infiltration that directly contributes to poor prognosis. This study sought to screen and identify pivotal biomarkers of OS immune infiltration and early diagnosis of OS. METHODS The immune cell infiltration profiles with transcriptome sequencing data from 88 OS samples were explored with CIBERSORT algorithm. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein-protein interaction (PPI) network analyses were applied to identify hub genes, with the expressions confirmed by dual immunofluorescence in 50 OS samples. The new biomarker gene HTRA1 were examined by immunohistochemistry and validated by the Immune score and immune gene expression profile analyses. The impact of HTRA1 on OS prognosis was verified by Least absolute shrinkage and selection operator (LASSO) regression analysis. The biological effect of HTRA1 was characterized in MG63 cells. RESULT CD8+ T cells, activated memory CD4+ T cells and plasma cells were positively correlated with the prognosis of OS. Hub genes CCL5, CXCL9, CXCL13, and HTRA1, exhibited positive correlation with the infiltration of both CD8+ T cells and CD4+ T cells. HTRA1 expression was reduced in osteosarcoma tissues, which was positively correlated with immune scores and the expressions of immune-related genes. High levels of HTRA1 were associated with favorable OS prognosis, and could negatively impacted MG63 malignant characteristics. CONCLUSION CCL5, CXCL9, CXCL13, and HTRA1 were OS hub genes positively correlate with CD8+ T cell and CD4+ T cell infiltrations. HTRA1 can serve as an underlying biomarker for the prognosis and immunotherapy of OS.
Collapse
Affiliation(s)
- Xin Song
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China; Department of Orthopedics, Xinqiao Hospital, Army Medical University.Chongqing,400038, China
| | - Sihao Chen
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| | - Junning Cheng
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou,311399, China
| | - Haiyu Li
- Institute of Intelligent Chinese Medicine,Chongqing University of Chinese Medicine,Chongqing 402760, China
| | - Ruixin Wu
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| | - Min Yan
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| | - Min Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University.Chongqing,400038, China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University.Chongqing,400038, China
| | - Aishun Jin
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| | - Wang Wang
- Department of Immunology, College of Bassic Medicine; Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention,Chongqing Medical University, Chongqing,400010, China
| |
Collapse
|
2
|
Jiang R, Yang L, Liu X, Xu Y, Han L, Chen Y, Gao G, Wang M, Su T, Li H, Fang L, Sun N, Du H, Zheng J, Wang G. Genetically engineered macrophages reverse the immunosuppressive tumor microenvironment and improve immunotherapeutic efficacy in TNBC. Mol Ther 2025:S1525-0016(25)00198-4. [PMID: 40119517 DOI: 10.1016/j.ymthe.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The main challenges in current immunotherapy for triple-negative breast cancer (TNBC) lie in the immunosuppressive tumor microenvironment (TME). Considering tumor-associated macrophages (TAMs) are the most abundant immune cells in the TME, resetting TAMs is a promising strategy for ameliorating the immunosuppressive TME. Here, we developed genetically engineered macrophages (GEMs) with gene-carrying adenoviruses, to maintain the M1-like phenotype and directly deliver the immune regulators interleukin-12 and CXCL9 into local tumors, thereby reversing the immunosuppressive TME. In tumor-bearing mice, GEMs demonstrated targeted enrichment in tumors and successfully reprogramed TAMs to M1-like macrophages. Moreover, GEMs significantly enhanced the accumulation, proliferation, and activation of CD8+ T cells, mature dendritic cells, and natural killer cells within tumors, while diminishing M2-like macrophages, immunosuppressive myeloid-derived suppressor cells, and regulatory T cells. This treatment efficiently suppressed tumor growth. In addition, combination therapy with GEMs and anti-programmed cell death protein 1 further improved interferon-γ+CD8+ T cell percentages and tumor inhibition efficacy in an orthotopic murine TNBC model. Therefore, this study provides a novel strategy for reversing the immunosuppressive TME and improving immunotherapeutic efficacy through live macrophage-mediated gene delivery.
Collapse
Affiliation(s)
- Ranran Jiang
- Department of Oncology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China; Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Liechi Yang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Xin Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Department of Urology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Yujun Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuxin Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ge Gao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Tong Su
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Hongwei Du
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Junnian Zheng
- Department of Oncology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Giamarellos-Bourboulis EJ, Antonelli M, Bloos F, Kotsamidi I, Psarrakis C, Dakou K, Thomas-Rüddel D, Montini L, Briegel J, Damoraki G, Koufargyris P, Anisoglou S, Antoniadou E, Vlachogianni G, Tsiantas C, Masullo M, Ioakeimidou A, Kondili E, Ntaganou M, Gkeka E, Papaioannou V, Polyzogopoulou E, Reininger AJ, De Pascale G, Kiehntopf M, Mouloudi E, Bauer M. Interferon-gamma driven elevation of CXCL9: a new sepsis endotype independently associated with mortality. EBioMedicine 2024; 109:105414. [PMID: 39447386 PMCID: PMC11539129 DOI: 10.1016/j.ebiom.2024.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Endotype classification becomes the cornerstone of understanding sepsis pathogenesis. Macrophage activation-like syndrome (MALS) and immunoparalysis are the best recognized major endotypes, so far. Interferon-gamma (IFNγ) action on tissue macrophages stimulates the release of the cytotoxic chemokine CXCL9. It was investigated if this mechanism may be an independent sepsis endotype. METHODS In this cohort study, 14 patient cohorts from Greece, Germany and Italy were studied. The cohorts were 2:1 randomly split into discovery and validation sets. Sepsis was defined by the Sepsis-3 definitions and blood was sampled the first 24 h from meeting the Sepsis-3 definitions. Concentrations of IFNγ, CXCL9, IP-10 (IFNγ induced protein-10), soluble CD163 and ferritin were measured. The endotype of IFNγ-driven sepsis (IDS) was defined in the discovery set as the combination of a) blood IFNγ above a specified cut-off associated with the minimal risk for immunoparalysis (defined as ≥8000 HLA-DR receptors on CD45/CD14-monoytes); and b) increase of CXCL9. Results were compared to the validation set. FINDINGS 5503 patients were studied; 3670 in the discovery set and 1833 in the validation set. IDS was defined as IFNγ more than 3 pg/ml and CXCL9 more than 2200 pg/ml. The frequency of IDS in the discovery set was 19.9% (732 patients; 95% confidence intervals-CIs 18.7-21.3%) and in the validation set 20.0% (366 patients; 95% CIs 18.2-21.9%). Soluble CD163, a marker of macrophage activation, was greater in IDS and IDS had features distinct from MALS. The mortality in IDS patients was 43.0% (315 patients; 95% CIs 39.5-46.6%) in the discovery set and 40.4% in the validation set (148 patients; 95% CIs 35.5-45.5%) (p = 0.44 compared to patients of the discovery set). IDS was an independent risk factor for death in the presence of other endotypes, severity scores and organ dysfunctions of the multivariate model [hazard ratio 1.71 (95% CIs 1.45-2.01) in the discovery set and 1.70 (95% CIs 1.34-2.16) in the validation set]. Decreases of IFNγ and CXCL9 blood levels within the first 72 h were associated with better outcome. INTERPRETATION IDS is a new sepsis endotype independently associated with unfavorable outcome. FUNDING Hellenic Institute for the Study of Sepsis; Horizon 2020 project ImmunoSep; Swedish Orphan BioVitrum AB (publ) and German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Evangelos J Giamarellos-Bourboulis
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece; Hellenic Institute for the Study of Sepsis, Athens, Greece.
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Frank Bloos
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Greece
| | - Ioanna Kotsamidi
- Intensive Care Unit, General Hospital "Ippokrateion", Thessaloniki, Greece
| | - Christos Psarrakis
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Daniel Thomas-Rüddel
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Greece
| | - Luca Montini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Josef Briegel
- Department of Anesthesiology, LMU Klinikum, LMU Munich, Munich, Greece
| | - Georgia Damoraki
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Panagiotis Koufargyris
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Souzana Anisoglou
- Intensive Care Unit, Theageneio General Hospital, Thessaloniki, Greece
| | - Eleni Antoniadou
- Intensive Care Unit, General Hospital "G.Gennimatas", Thessaloniki, Greece
| | | | | | - Matteo Masullo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Eumorfia Kondili
- Department of Critical Care Medicine, University of Crete, Medical School, Herakleion, Greece
| | - Maria Ntaganou
- Multivalent Intensive Care Unit, General Hospital of Chest Diseases "Sotiria", Athens, Greece
| | - Eleni Gkeka
- Intensive Care Unit, General Hospital AHEPA, Thessaloniki, Greece
| | - Vassileios Papaioannou
- Department of Critical Care Medicine, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Effie Polyzogopoulou
- Department of Emergency Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena, Jena University Hospital, Jena, Germany
| | - Eleni Mouloudi
- Intensive Care Unit, General Hospital "Ippokrateion", Thessaloniki, Greece
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Greece
| |
Collapse
|
4
|
Bidgood GM, Keating N, Doggett K, Nicholson SE. SOCS1 is a critical checkpoint in immune homeostasis, inflammation and tumor immunity. Front Immunol 2024; 15:1419951. [PMID: 38947335 PMCID: PMC11211259 DOI: 10.3389/fimmu.2024.1419951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
The Suppressor of Cytokine Signaling (SOCS) family proteins are important negative regulators of cytokine signaling. SOCS1 is the prototypical member of the SOCS family and functions in a classic negative-feedback loop to inhibit signaling in response to interferon, interleukin-12 and interleukin-2 family cytokines. These cytokines have a critical role in orchestrating our immune defence against viral pathogens and cancer. The ability of SOCS1 to limit cytokine signaling positions it as an important immune checkpoint, as evidenced by the detection of detrimental SOCS1 variants in patients with cytokine-driven inflammatory and autoimmune disease. SOCS1 has also emerged as a key checkpoint that restricts anti-tumor immunity, playing both a tumor intrinsic role and impacting the ability of various immune cells to mount an effective anti-tumor response. In this review, we describe the mechanism of SOCS1 action, focusing on the role of SOCS1 in autoimmunity and cancer, and discuss the potential for new SOCS1-directed cancer therapies that could be used to enhance adoptive immunotherapy and immune checkpoint blockade.
Collapse
Affiliation(s)
- Grace M. Bidgood
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Narelle Keating
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Karen Doggett
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Sandra E. Nicholson
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Enbergs N, Halabi EA, Goubet A, Schleyer K, Fredrich IR, Kohler RH, Garris CS, Pittet MJ, Weissleder R. Pharmacological Polarization of Tumor-Associated Macrophages Toward a CXCL9 Antitumor Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309026. [PMID: 38342608 PMCID: PMC11022742 DOI: 10.1002/advs.202309026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Indexed: 02/13/2024]
Abstract
Tumor-associated macrophages (TAM) are a diverse population of myeloid cells that are often abundant and immunosuppressive in human cancers. CXCL9Hi TAM has recently been described to have an antitumor phenotype and is linked to immune checkpoint response. Despite the emerging understanding of the unique antitumor TAM phenotype, there is a lack of TAM-specific therapeutics to exploit this new biological understanding. Here, the discovery and characterization of multiple small-molecule enhancers of chemokine ligand 9 (CXCL9) and their targeted delivery in a TAM-avid systemic nanoformulation is reported. With this strategy, it is efficient encapsulation and release of multiple drug loads that can efficiently induce CXCL9 expression in macrophages, both in vitro and in vivo in a mouse tumor model. These observations provide a window into the molecular features that define TAM-specific states, an insight a novel therapeutic anticancer approach is used to discover.
Collapse
Affiliation(s)
- Noah Enbergs
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Elias A. Halabi
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Anne‐Gaëlle Goubet
- Department of Pathology and ImmunologyUniversity of GenevaGeneva1211Switzerland
- AGORA Cancer CenterSwiss Cancer Center LemanLausanne1011Switzerland
| | - Kelton Schleyer
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Ina R. Fredrich
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Rainer H. Kohler
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Christopher S. Garris
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Mikaël J. Pittet
- Department of Pathology and ImmunologyUniversity of GenevaGeneva1211Switzerland
- AGORA Cancer CenterSwiss Cancer Center LemanLausanne1011Switzerland
- Ludwig Institute for Cancer ResearchLausanne1005Switzerland
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
| |
Collapse
|
6
|
Baig MS, Barmpoutsi S, Bharti S, Weigert A, Hirani N, Atre R, Khabiya R, Sharma R, Sarup S, Savai R. Adaptor molecules mediate negative regulation of macrophage inflammatory pathways: a closer look. Front Immunol 2024; 15:1355012. [PMID: 38482001 PMCID: PMC10933033 DOI: 10.3389/fimmu.2024.1355012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.
Collapse
Affiliation(s)
- Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Shivmuni Sarup
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Perevalova AM, Gulyaeva LF, Pustylnyak VO. Roles of Interferon Regulatory Factor 1 in Tumor Progression and Regression: Two Sides of a Coin. Int J Mol Sci 2024; 25:2153. [PMID: 38396830 PMCID: PMC10889282 DOI: 10.3390/ijms25042153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
IRF1 is a transcription factor well known for its role in IFN signaling. Although IRF1 was initially identified for its involvement in inflammatory processes, there is now evidence that it provides a function in carcinogenesis as well. IRF1 has been shown to affect several important antitumor mechanisms, such as induction of apoptosis, cell cycle arrest, remodeling of tumor immune microenvironment, suppression of telomerase activity, suppression of angiogenesis and others. Nevertheless, the opposite effects of IRF1 on tumor growth have also been demonstrated. In particular, the "immune checkpoint" molecule PD-L1, which is responsible for tumor immune evasion, has IRF1 as a major transcriptional regulator. These and several other properties of IRF1, including its proposed association with response and resistance to immunotherapy and several chemotherapeutic drugs, make it a promising object for further research. Numerous mechanisms of IRF1 regulation in cancer have been identified, including genetic, epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms, although their significance for tumor progression remains to be explored. This review will focus on the established tumor-suppressive and tumor-promoting functions of IRF1, as well as the molecular mechanisms of IRF1 regulation identified in various cancers.
Collapse
Affiliation(s)
- Alina M. Perevalova
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, Novosibirsk 630090, Russia; (A.M.P.)
- Federal Research Center of Fundamental and Translational Medicine, Timakova Street, 2/12, Novosibirsk 630117, Russia
| | - Lyudmila F. Gulyaeva
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, Novosibirsk 630090, Russia; (A.M.P.)
- Federal Research Center of Fundamental and Translational Medicine, Timakova Street, 2/12, Novosibirsk 630117, Russia
| | - Vladimir O. Pustylnyak
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, Novosibirsk 630090, Russia; (A.M.P.)
- Federal Research Center of Fundamental and Translational Medicine, Timakova Street, 2/12, Novosibirsk 630117, Russia
| |
Collapse
|