1
|
Hu Y, Meng Y, Zhuang Z, Li Y, Nan J, Xu N, Ye Z, Jing J. Prospects for PARG inhibitors in cancer therapy. J Mol Cell Biol 2025; 16:mjae050. [PMID: 39668635 PMCID: PMC12123320 DOI: 10.1093/jmcb/mjae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Poly(ADP-ribose) glycosylhydrolase (PARG) is an enzyme involved in hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PAR), which are primarily found in the nucleus. Along with poly(ADP-ribose) polymerase, PARG regulates the level of PAR in cells, playing a crucial role in DNA maintenance and repair processes. Recent studies have revealed elevated levels of PARG in various cancers, such as breast, liver, prostate, and esophageal cancers, indicating a link to unfavorable cancer outcomes. PARG is a significant molecular target for treating PAR-related cancers. This review provides a comprehensive overview of the physiological role of PARG and the development of its inhibitors, highlighting its potential as an innovative target for cancer treatment.
Collapse
Affiliation(s)
- Yangchan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zirui Zhuang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China
| | - Yuancong Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Junjun Nan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ning Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Zu Ye
- Gastric Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| |
Collapse
|
2
|
Hussain M, Khadka P, Pekhale K, Kulikowicz T, Gray S, May A, Croteau DL, Bohr VA. RECQL4 requires PARP1 for recruitment to DNA damage, and PARG dePARylation facilitates its associated role in end joining. Exp Mol Med 2025; 57:264-280. [PMID: 39870799 PMCID: PMC11799438 DOI: 10.1038/s12276-024-01383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 01/29/2025] Open
Abstract
RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ). RECQL4 has more prominent single-strand DNA annealing activity than helicase activity. Its ability to promote DNA damage repair and the precise role of its DNA annealing activity in DNA repair are unclear. Here we demonstrate that PARP1 interacts with RECQL4, increasing its single-stranded DNA strand annealing activity. PARP1 specifically promoted RECQL4 PARylation at both its N- and C-terminal regions, promoting RECQL4 recruitment to DNA double-strand breaks (DSBs). Inhibition or depletion of PARP1 significantly diminished RECQL4 recruitment and occupancy at specific DSB sites on chromosomes. After DNA damage, PARG dePARylated RECQL4 and stimulated its end-joining activity. RECQL4 actively displaced replication protein A from single-stranded DNA, promoting microhomology annealing in vitro. Furthermore, depletion of PARP1 or RECQL4 substantially impacted classical-NHEJ- and alternative-NHEJ-mediated DSB repair. Consequently, the combined activities of PARP1, PARG and RECQL4 modulate DNA repair.
Collapse
Affiliation(s)
- Mansoor Hussain
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Prabhat Khadka
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Komal Pekhale
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tomasz Kulikowicz
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Samuel Gray
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alfred May
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Deborah L Croteau
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Dept of ICMM, University of Copenhagen, Copenhagn, Denmark.
| |
Collapse
|
3
|
Caggiano R, Prokhorova E, Duma L, Schützenhofer K, Lauro R, Catara G, Melillo RM, Celetti A, Smith R, Weroha SJ, Kaufmann SH, Ahel I, Palazzo L. Suppression of ADP-ribosylation reversal triggers cell vulnerability to alkylating agents. Neoplasia 2025; 59:101092. [PMID: 39615107 PMCID: PMC11648251 DOI: 10.1016/j.neo.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The ADP-ribosyl hydrolases PARG and ARH3 counteract PARP enzymatic activity by removing ADP-ribosylation. PARG and ARH3 activities have a synthetic lethal effect; however, the specific molecular mechanisms underlying this response remain unknown. Here, we show that the PARG and ARH3 synthetic lethality is enhanced further in the presence of DNA alkylating agents, suggesting that the inability to revert ADP-ribosylation primarily affects the repair of alkylated DNA bases. ARH3 knockout cells, treated with PARG inhibitor and alkylating genotoxins, accumulated single-stranded DNA and DNA damage, resulting in G2/M cell cycle arrest and apoptosis. Furthermore, we reveal a reduction in PARP1/PARP2 levels in ARH3-deficient cells treated with PARG inhibitor due to excessive ADP-ribosylation, which may contribute to alkylating agents' vulnerability. Collectively, these results uncover the potential of targeting ADP-ribosyl hydrolases in combination with alkylating agents for cancer therapy and provide insights into the mechanisms underlying the synthetic lethal effect.
Collapse
Affiliation(s)
- Rocco Caggiano
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kira Schützenhofer
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Raffaella Lauro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Angela Celetti
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | - Luca Palazzo
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
4
|
Rack JGM, Voorneveld J, Longarini EJ, Wijngaarden S, Zhu K, Peters A, Sia JJ, Prokhorova E, Ahel D, Matić I, Filippov DV, Ahel I. Reversal of tyrosine-linked ADP-ribosylation by ARH3 and PARG. J Biol Chem 2024; 300:107838. [PMID: 39342999 PMCID: PMC11541775 DOI: 10.1016/j.jbc.2024.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification with exceptional versatility in terms of breadth of modification targets including at least seven different amino acid side chains, various moieties on nucleic acids, and a variety of small chemical compounds. The spatiotemporal signaling dynamic of the different modification variations is tightly regulated and depends on the writers, erases, and readers of each type. Among these, tyrosine ADP-ribosylation (Tyr-ADPr) has been consistently detected as a novel modification type, but systematic analysis of its potential physiological role, modification establishment, and reversal are still lacking. Here we present a re-analysis of recent ADP-ribosylome data and show that Tyr-ADPr sites are conserved and enriched among ribosome biogenesis and mRNA processing proteins and that these sites are affected by the status of the (ADP-ribosyl)hydrolase ARH3. To facilitate the study of Tyr-ADPr, we establish methodologies for the synthesis of well-defined Tyr-ADPr peptides and with these could show that Tyr-ADPr is reversed both by ARH3 and PARG enzymes. Together, our work lays the foundation for the future exploration of the Tyr-ADPr.
Collapse
Affiliation(s)
| | - Jim Voorneveld
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Edoardo José Longarini
- Research Group of Proteomics and ADP-ribosylation Signalling, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alessandra Peters
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jia Jhing Sia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Matić
- Research Group of Proteomics and ADP-ribosylation Signalling, Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Wang J, Wang ZQ, Zong W. ADP-ribose hydrolases: biological functions and potential therapeutic targets. Expert Rev Mol Med 2024; 26:e21. [PMID: 39375922 PMCID: PMC11488344 DOI: 10.1017/erm.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Collapse
Affiliation(s)
- Jingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Jena 07743, Germany
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
6
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 PMCID: PMC11877395 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Kar P, Chatrin C, Đukić N, Suyari O, Schuller M, Zhu K, Prokhorova E, Bigot N, Baretić D, Ahel J, Elsborg JD, Nielsen ML, Clausen T, Huet S, Niepel M, Sanyal S, Ahel D, Smith R, Ahel I. PARP14 and PARP9/DTX3L regulate interferon-induced ADP-ribosylation. EMBO J 2024; 43:2929-2953. [PMID: 38834853 PMCID: PMC11251020 DOI: 10.1038/s44318-024-00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
Collapse
Affiliation(s)
- Pulak Kar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Department of Biological Sciences, SRM University-AP, Amaravati, 522502, India
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nina Đukić
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Osamu Suyari
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, F-35000, Rennes, France
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Juraj Ahel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Jonas Damgaard Elsborg
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, F-35000, Rennes, France
| | | | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
8
|
Wondisford AR, Lee J, Lu R, Schuller M, Groslambert J, Bhargava R, Schamus-Haynes S, Cespedes LC, Opresko PL, Pickett HA, Min J, Ahel I, O'Sullivan RJ. Deregulated DNA ADP-ribosylation impairs telomere replication. Nat Struct Mol Biol 2024; 31:791-800. [PMID: 38714889 PMCID: PMC11102865 DOI: 10.1038/s41594-024-01279-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
The recognition that DNA can be ADP ribosylated provides an unexpected regulatory level of how ADP-ribosylation contributes to genome stability, epigenetics and immunity. Yet, it remains unknown whether DNA ADP-ribosylation (DNA-ADPr) promotes genome stability and how it is regulated. Here, we show that telomeres are subject to DNA-ADPr catalyzed by PARP1 and removed by TARG1. Mechanistically, we show that DNA-ADPr is coupled to lagging telomere DNA strand synthesis, forming at single-stranded DNA present at unligated Okazaki fragments and on the 3' single-stranded telomere overhang. Persistent DNA-linked ADPr, due to TARG1 deficiency, eventually leads to telomere shortening. Furthermore, using the bacterial DNA ADP-ribosyl-transferase toxin to modify DNA at telomeres directly, we demonstrate that unhydrolyzed DNA-linked ADP-ribose compromises telomere replication and telomere integrity. Thus, by identifying telomeres as chromosomal targets of PARP1 and TARG1-regulated DNA-ADPr, whose deregulation compromises telomere replication and integrity, our study highlights and establishes the critical importance of controlling DNA-ADPr turnover for sustained genome stability.
Collapse
Affiliation(s)
- Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junyeop Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Ragini Bhargava
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Schamus-Haynes
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leyneir C Cespedes
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Patricia L Opresko
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|