1
|
Hu Y, Rodiger J, Liu Y, Gao C, Liu Y, Qadiri M, Veal A, Bulyk ML, Perrimon N. TF2TG: an online resource mining the potential gene targets of transcription factors in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638157. [PMID: 39990429 PMCID: PMC11844531 DOI: 10.1101/2025.02.13.638157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sequence-specific transcription factors (TFs) are key regulators of many biological processes, controlling the expression of their target genes through binding to the cis- regulatory regions such as promoters and enhancers. Each TF has unique DNA binding site motifs, and large-scale experiments have been conducted to characterize TF-DNA binding preferences. However, no comprehensive resource currently integrates these datasets for Drosophila. To address this need, we developed TF2TG ("transcription factor to target gene"), a comprehensive resource that combines both in vitro and in vivo datasets to link transcription factors (TFs) to their target genes based on TF-DNA binding preferences along with the protein-protein interaction data, tissue-specific transcriptomic data, and chromatin accessibility data. Although the genome offers numerous potential binding sites for each TF, only a subset is actually bound in vivo, and of these, only a fraction is functionally relevant. For instance, some TFs bind to their specific sites due to synergistic interactions with other factors nearby. This integration provides users with a comprehensive list of potential candidates as well as aids users in ranking candidate genes and determining condition-specific TF binding for studying transcriptional regulation in Drosophila.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chenxi Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Mujeeb Qadiri
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Austin Veal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| |
Collapse
|
2
|
Pranoto IKA, Kwon YV. Protocol to analyze Drosophila intestinal tumor cellular heterogeneity using immunofluorescence imaging and nuclear size quantification. STAR Protoc 2024; 5:102946. [PMID: 38470911 PMCID: PMC10945268 DOI: 10.1016/j.xpro.2024.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Drosophila intestinal tumors show an extended cellular heterogeneity. We devise a protocol to assess tumor cell heterogeneity by employing nuclear size measurement and immunofluorescence-based cell lineage analysis. We describe steps for intestinal dissection, staining, and imaging, followed by detailed procedures for nuclear size analysis. This approach detects overall heterogeneity across the entire tumor cell population and deviations within specific cell populations. The procedure is also applicable for analyzing the heterogeneity of wild-type intestinal cells in various contexts. For complete details on the use and execution of this protocol, please refer to Pranoto et al.1.
Collapse
Affiliation(s)
| | - Young V Kwon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|