1
|
Huang Q, Jing Y, Xiong L, Li L, Feng J, Cheng J. The interplay between driver mutation and oxidative stress in colorectal cancer: from pathogenesis to therapeutics. J Transl Med 2025; 23:635. [PMID: 40490762 DOI: 10.1186/s12967-025-06640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/23/2025] [Indexed: 06/11/2025] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by genetic mutations and environmental factors, especially oxidative stress. Driver mutations are pivotal in CRC initiation and progression and alter key signaling pathways involved in cell proliferation, apoptosis, and genomic stability. Concurrently, oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, plays a crucial role in CRC development by promoting DNA damage, lipid peroxidation, and redox signaling dysregulation. The molecular mechanisms linking driver mutations and oxidative stress pathways underscore their collective or antagonistic impact on CRC heterogeneity, therapeutic responses, and clinical outcomes. Insights into mutation-specific vulnerabilities and redox modulation offer promising avenues for targeted therapies and personalized medicine approaches in CRC treatment. Here, we discuss the intricate interplay between driver mutations and oxidative stress, highlight emerging trends, and propose future research directions to advance our understanding of CRC pathogenesis and optimize therapeutic interventions.
Collapse
Affiliation(s)
- Qi Huang
- Department of Anorectal Surgery, The People's Hospital of Leshan, Leshan, 614000, China
| | - Yuan Jing
- Department of Medical Records, The People's Hospital of Leshan, Leshan, 614000, China
| | - Lihua Xiong
- Department of Dermatology, Cheng Du Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, 610500, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Jingjuan Feng
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jian Cheng
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
2
|
Bryan C, Cepeda J, Li B, Yang K. DNA-Protein Cross-Links Derived from Abasic DNA Lesions: Recent Progress and Future Directions. Chem Res Toxicol 2025. [PMID: 40387817 DOI: 10.1021/acs.chemrestox.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Covalent DNA-protein cross-links (DPCs), if not resolved, can block DNA replication and transcription, resulting in genome instability. Compared to other types of DNA damage, how DPCs are formed and repaired is less understood. This review focuses on recent findings concerning DPCs derived from two types of abasic DNA lesions, apurinic/apyrimidinic sites and 3'-phospho-α,β-unsaturated aldehydes. It summarizes the newly reported DPCs and their identification by liquid chromatography tandem mass spectrometry. It also reviews the approaches for synthesizing stable and site-specific DPCs, and their applications for discovering the corresponding repair mechanisms. Finally, it discusses the future directions to better understand the mechanistic formation and repair of those DPCs.
Collapse
Affiliation(s)
- Cameron Bryan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joel Cepeda
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bingru Li
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
4
|
Peña-Gómez MJ, Rodríguez-Martín Y, del Rio Oliva M, Wijesekara Hanthi Y, Berrada S, Freire R, Masson JY, Reyes JC, Costanzo V, Rosado IV. HMCES corrupts replication fork stability during base excision repair in homologous recombination-deficient cells. SCIENCE ADVANCES 2025; 11:eads3227. [PMID: 40138423 PMCID: PMC11939059 DOI: 10.1126/sciadv.ads3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Apurinic/apyrimidinic (AP) sites and single-strand breaks arising from base excision repair (BER) during the misincorporation of damaged nucleobases may hinder replication fork stability in homologous recombination-deficient (HRD) cells. At templated AP sites, cross-links between the DNA and 5-hydroxymethylcytosine binding, embryonic stem cell-specific (HMCES) regulate replication fork speed, avoiding cytotoxic double-strand breaks. While the role of HMCES at the template DNA strand is well studied, its effects on nascent DNA are not. We provide evidence that HMCES-DNA-protein cross-links (DPCs) are detrimental to the BER-mediated removal of 5-hydroxymethyl-2'-deoxycytidine (5hmdC)-derived 5-hydroxymethyl-2'-deoxyuridine from replication forks. HRD cells have heightened HMCES-DPCs, which increase further upon 5hmdC exposure, suggesting that HMCES binds both spontaneous and 5hmdC-induced AP sites. HMCES depletion substantially suppresses 5hmdC-mediated replication fork defects, chromosomal aberrations, and cell death in HRD cells. This reveals that HMCES-DPCs are a source of BER-initiated single-stranded DNA gaps, which indicates that endogenous DPCs contribute to genomic instability in HRD tumors.
Collapse
Affiliation(s)
- María José Peña-Gómez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Yaiza Rodríguez-Martín
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Marta del Rio Oliva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Yodhara Wijesekara Hanthi
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Sara Berrada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - José Carlos Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Vincenzo Costanzo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Iván V. Rosado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| |
Collapse
|
5
|
Yudkina AV, Amanova MM, Zharkov DO. Polyamine Adducts with AP Sites: Interaction with DNA Polymerases and AP Endonucleases. Chem Res Toxicol 2025; 38:102-114. [PMID: 39763436 DOI: 10.1021/acs.chemrestox.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine. Here we have investigated formation of AP site adducts with spermine and spermidine using sodium borohydride trapping technique and shown that they could persist in DNA for long enough to possibly interfere with cell's replication and transcription machinery. We demonstrate that both adducts placed internally into DNA are strongly blocking for DNA polymerases (Klenow fragment, phage RB69 polymerase, human polymerases β and κ) and direct dAMP incorporation in the rare bypass events. The internal AP site adducts with polyamines can be repaired, albeit rather slowly, by Escherichia coli endonuclease IV and yeast Apn1 but not by human AP endonuclease APE1 or E. coli exonuclease III, whereas the 3'-terminal adducts are substrates for the phosphodiesterase activities of all these AP endonucleases.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Margarita M Amanova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Iveland TS, Hagen L, de Sousa MML, Liabakk NB, Aas PA, Sharma A, Kavli B, Slupphaug G. Cytotoxic mechanisms of pemetrexed and HDAC inhibition in non-small cell lung cancer cells involving ribonucleotides in DNA. Sci Rep 2025; 15:2082. [PMID: 39814799 PMCID: PMC11736037 DOI: 10.1038/s41598-025-86007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers. Proteomic alterations were analyzed using label-free shotgun and targeted LC-MS/MS. MS275 enhanced the sensitivity of A549 cells to pemetrexed, but only when administered following prior treatment with pemetrexed. Both HeLa (p53 negative) and A549 (p53 positive) showed robust activation of γH2AX upon treatment with this combination. Importantly, CRISPR/Cas9 knockout of the uracil-DNA glycosylase UNG did not affect γH2AX activation or sensitivity to pemetrexed. Proteomic analysis revealed that MS275 altered the expression of known pemetrexed targets, as well as several proteins involved in pyrimidine metabolism and DNA repair, which could potentiate pemetrexed cytotoxicity. Contrary to the conventional model of antifolate toxicity, which implicates futile cycles of uracil incorporation and excision in DNA, we propose that ribonucleotide incorporation in nuclear and mitochondrial DNA significantly contributes to the cytotoxicity of antifolates like pemetrexed, and likely also of fluorinated pyrimidine analogs. HDAC inhibition apparently exacerbates cytotoxicity of these agents by inhibiting error-free repair of misincorporated ribonucleotides in DNA. The potential of HDACis to modulate pyrimidine metabolism and DNA damage responses offers novel strategies for improving NSCLC outcomes.
Collapse
Affiliation(s)
- Tobias Solli Iveland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Cancer Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway.
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway.
| |
Collapse
|
7
|
Cranford MT, Dahmen SN, Cortez D, Dewar JM. Leading and lagging strand abasic sites differentially affect vertebrate replisome progression but involve analogous bypass mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632187. [PMID: 39829849 PMCID: PMC11741305 DOI: 10.1101/2025.01.09.632187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Abasic sites are one of the most frequent forms of DNA damage that interfere with DNA replication. However, abasic sites exhibit complex effects because they can be processed into other types of DNA damage. Thus, it remains poorly understood how abasic sites affect replisome progression, which replication-coupled repair pathways they elicit, and whether this is affected by the template strand that is damaged. Using Xenopus egg extracts, we developed an approach to analyze replication of DNA containing a site-specific, stable abasic site on the leading or lagging strand template. We show that abasic sites robustly stall synthesis of nascent DNA strands but exert different effects when encountered on the leading or lagging strand template. At a leading strand AP site, replisomes stall ∼100 bp from the lesion until it is bypassed or a converging fork triggers termination. At a lagging strand abasic site, replisome progression is unaffected and lagging strands are reprimed downstream, generating a post-replicative gap, which is then bypassed. Despite different effects on replisome progression, both leading and lagging strand abasic sites rely on translesion DNA synthesis for bypass. Our results detail similarities and differences between how leading and lagging strand AP sites affect vertebrate DNA replication.
Collapse
|
8
|
Adolph MB, Warren GM, Couch FB, Greer BH, Eichman BF, Cortez D. WITHDRAWN: Strand dependent bypass of DNA lesions during fork reversal by ATP-dependent translocases SMARCAL1, ZRANB3, and HLTF. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613558. [PMID: 39345618 PMCID: PMC11429910 DOI: 10.1101/2024.09.17.613558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The authors have withdrawn this manuscript because they identified problems with how some figure panels were processed. Those experiments will be repeated before deposition of a new manuscript. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding authors.
Collapse
|
9
|
Quiñones JL, Tang M, Fang Q, Sobol RW, Demple B. C-terminal residues of DNA polymerase β and E3 ligase required for ubiquitin-linked proteolysis of oxidative DNA-protein crosslinks. DNA Repair (Amst) 2024; 143:103756. [PMID: 39243487 DOI: 10.1016/j.dnarep.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Free radicals produce in DNA a large variety of base and deoxyribose lesions that are corrected by the base excision DNA repair (BER) system. However, the C1'-oxidized abasic residue 2-deoxyribonolactone (dL) traps DNA repair lyases in covalent DNA-protein crosslinks (DPC), including the core BER enzyme DNA polymerase beta (Polβ). Polβ-DPC are rapidly processed in mammalian cells by proteasome-dependent digestion. Blocking the proteasome causes oxidative Polβ-DPC to accumulate in a ubiquitylated form, and this accumulation is toxic to human cells. In the current study, we investigated the mechanism of Polβ-DPC processing in cells exposed to the dL-inducing oxidant 1,10-copper-ortho-phenanthroline. Alanine substitution of either or both of two Polβ C-terminal residues, lysine-206 and lysine-244, enhanced the accumulation of mutant Polβ-DPC relative to the wild-type protein, and removal of the mutant DPC was diminished. Substitution of the N-terminal lysines 41, 61, and 81 did not affect Polβ-DPC processing. For Polβ with the C-terminal lysine substitutions, the amount of ubiquitin in the stabilized DPC was lowered by ∼40 % relative to wild-type Polβ. Suppression of the HECT domain-containing E3 ubiquitin ligase TRIP12 augmented the formation of oxidative Polβ-DPC and prevented Polβ-DPC removal in oxidant-treated cells. Consistent with the toxicity of accumulated oxidative Polβ-DPC, TRIP12 knockdown increased oxidant-mediated cytotoxicity. Thus, ubiquitylation of lysine-206 and lysine-244 by TRIP12 is necessary for digestion of Polβ-DPC by the proteasome as the rapid first steps of DPC repair to prevent their cytotoxic accumulation. Understanding how DPC formed with Polβ or other AP lyases are repaired in vivo is an important step in revealing how cells cope with the toxic potential of such adducts.
Collapse
Affiliation(s)
- Jason L Quiñones
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA
| | - Meiyi Tang
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA
| | - Qingming Fang
- Mitchell Cancer Institute & Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- Mitchell Cancer Institute & Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA; Department of Radiation Oncology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA.
| |
Collapse
|
10
|
Weickert P, Dürauer S, Götz MJ, Li HY, Stingele J. Electro-elution-based purification of covalent DNA-protein cross-links. Nat Protoc 2024; 19:2891-2914. [PMID: 38890499 DOI: 10.1038/s41596-024-01004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/19/2024] [Indexed: 06/20/2024]
Abstract
Covalent DNA-protein cross-links (DPCs) are pervasive DNA lesions that challenge genome stability and can be induced by metabolic or chemotherapeutic cross-linking agents including reactive aldehydes, topoisomerase poisons and DNMT1 inhibitors. The purification of x-linked proteins (PxP), where DNA-cross-linked proteins are separated from soluble proteins via electro-elution, can be used to identify DPCs. Here we describe a versatile and sensitive strategy for PxP. Mammalian cells are collected following exposure to a DPC-inducing agent, embedded in low-melt agarose plugs and lysed under denaturing conditions. Following lysis, the soluble proteins are extracted from the agarose plug by electro-elution, while genomic DNA and cross-linked proteins are retained in the plug. The cross-linked proteins can then be analyzed by standard analytical techniques such as sodium dodecyl-sulfate-polyacrylamide gel electrophoresis followed by western blotting or fluorescent staining. Alternatively, quantitative mass spectrometry-based proteomics can be used for the unbiased identification of DPCs. The isolation and analysis of DPCs by PxP overcomes the limitations of alternative methods to analyze DPCs that rely on precipitation as the separating principle and can be performed by users trained in molecular or cell biology within 2-3 d. The protocol has been optimized to study DPC induction and repair in mammalian cells but may also be adapted to other sample types including bacteria, yeast and tissue samples.
Collapse
Affiliation(s)
- Pedro Weickert
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophie Dürauer
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian J Götz
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian Stingele
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
11
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Oswalt LE, Eichman BF. NEIL3: A unique DNA glycosylase involved in interstrand DNA crosslink repair. DNA Repair (Amst) 2024; 139:103680. [PMID: 38663144 PMCID: PMC11162926 DOI: 10.1016/j.dnarep.2024.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.
Collapse
Affiliation(s)
- Leah E Oswalt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Ruiz PD, Smogorzewska A. Temporary HMCES-DNA cross-link prevents permanent DNA damage. Cell Rep 2024; 43:113594. [PMID: 38141170 PMCID: PMC10986309 DOI: 10.1016/j.celrep.2023.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023] Open
Abstract
HMCES, a recently discovered but ancient protein, covalently attaches to damaged single-stranded DNA and shields it from nucleases. Rua-Fernandez and colleagues now show that HMCES catalyzes its own recycling, permitting normal growth and non-mutagenic DNA repair.1.
Collapse
Affiliation(s)
- Penelope D Ruiz
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Yang Y, Zhao C, Wang Z, Liu F, Zhao M, Yang H, Chen J, Chen X, Shi M, Jiang D, Luo X, Duan Y, Bai Y. Therapeutic strategies and predictive models for Xp11.2 translocation/TFE3 gene fusion renal cell carcinoma in adults based on data of two Chinese medical centers. Aging (Albany NY) 2024; 16:1696-1711. [PMID: 38261736 PMCID: PMC10866448 DOI: 10.18632/aging.205452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE This study aims to establish an effective predictive model for predicting Xp11.2 translocation/TFE3 gene fusion renal cell carcinoma (TFE3-RCC) and develop optimal therapeutic strategies. METHODS Data from 4961 patients diagnosed with renal cell carcinoma at two medical centers in China were retrospectively analyzed. A cohort of 1571 patients from Zhejiang Provincial People's Hospital (Ra cohort) was selected to construct the model. Another cohort of 1124 patients from the Second Affiliated Hospital of Zhejiang Chinese Medical University was used for external validation (the Ha cohort). All patients with TFE3-RCC in both cohorts were included in the Ta cohort for the prognostic analysis. Univariate and multivariate binary logistic regression analyses were performed to identify independent predictors of the predictive nomogram. The apparent performance of the model was validated. Decision curve analysis was also performed to assess the clinical utility of the developed model. Factors associated with progression and prognosis in the Ta cohort were analyzed using the log-rank method, and Cox regression analysis and Kaplan-Meier survival curves were used to describe the effects of factors on prognosis and progression. RESULTS Univariate and multivariate logistic regression analyses demonstrated that age, sex, BMI, smoking, eosinophils, and LDL were independent predictors of TFE3-RCC. Therefore, a predictive nomogram for TFE3-RCC, which had good discriminatory power (AUC = 0.796), was constructed. External validation (AUC = 0.806) also revealed good predictive ability. The calibration curves displayed good consistency between the predicted and observed incidences of TFE3-RCC. Invasion of regional lymph nodes, tyrosine kinase inhibitors, and surgical methods were independent factors associated with progression. Tyrosine kinase inhibitors are independent prognostic factors. CONCLUSION This study not only proposed a high-precision clinical prediction model composed of various variables for the early diagnosis of Xp11.2 translocation/TFE3 gene fusion renal cell carcinoma but also optimized therapeutic strategies through prognostic analysis.
Collapse
Affiliation(s)
- Yunkai Yang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| | - Changfeng Zhao
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
- Graduate School of Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Zhida Wang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| | - Feng Liu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| | - Ming Zhao
- Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang 310011, China
| | - Huiwen Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Jun Chen
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Xuejing Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Min Shi
- Department of Medical Psychology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Dixing Jiang
- Department of Urology, Zhejiang Medical and Health Group Hangzhou Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310022, China
| | - Xiaoting Luo
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| | - Yue Duan
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China
| | - Yuchen Bai
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310011, China
| |
Collapse
|
15
|
Essawy MM, Campbell C. Enzymatic Processing of DNA-Protein Crosslinks. Genes (Basel) 2024; 15:85. [PMID: 38254974 PMCID: PMC10815813 DOI: 10.3390/genes15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).
Collapse
Affiliation(s)
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|