1
|
Alvarez-Valadez K, Sauvat A, Diharce J, Leduc M, Stoll G, Guittat L, Lambertucci F, Paillet J, Motiño O, Ferret L, Muller A, Forveille S, Maiuri MC, Kepp O, de Brevern AG, Wodrich H, Pol JG, Kroemer G, Djavaheri-Mergny M. Lysosomal damage due to cholesterol accumulation triggers immunogenic cell death. Autophagy 2025; 21:934-956. [PMID: 39663580 PMCID: PMC12013445 DOI: 10.1080/15548627.2024.2440842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cholesterol serves as a vital lipid that regulates numerous physiological processes. Nonetheless, its role in regulating cell death processes remains incompletely understood. In this study, we investigated the role of cholesterol trafficking in immunogenic cell death. Through cell-based drug screening, we identified two antidepressants, sertraline and indatraline, as potent inducers of the nuclear translocation of TFEB (transcription factor EB). Activation of TFEB was mediated through the autophagy-independent lipidation of MAP1LC3/LC3 (microtubule associated protein 1 light chain 3). Both compounds promoted cholesterol accumulation within lysosomes, resulting in lysosomal membrane permeabilization, disruption of autophagy and cell death that could be reversed by cholesterol depletion. Molecular docking analysis indicated that sertraline and indatraline have the potential to inhibit cholesterol binding to the lysosomal cholesterol transporters, NPC1 (NPC intracellular cholesterol transporter 1) and NPC2. This inhibitory effect might be further enhanced by the upregulation of NPC1 and NPC2 expression by TFEB. Both antidepressants also upregulated PLA2G15 (phospholipase A2 group XV), an enzyme that elevates lysosomal cholesterol. In cancer cells, sertraline and indatraline elicited immunogenic cell death, converting dying cells into prophylactic vaccines that were able to confer protection against tumor growth in mice. In a therapeutic setting, a single dose of each compound was sufficient to significantly reduce the outgrowth of established tumors in a T-cell-dependent manner. These results identify sertraline and indatraline as immunostimulatory agents for cancer treatment. More generally, this research shed light on novel therapeutic avenues harnessing lysosomal cholesterol transport to regulate immunogenic cell death.Abbreviation: ATG5: autophagy related 5; ATG13: autophagy related 13; DKO: double knockout; ICD: immunogenic cell death; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; LGALS3: galectin 3; LDL: low-density lipoprotein; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTX: mitoxantrone; NPC1: NPC intracellular cholesterol transporter 1; NPC2: NPC intracellular cholesterol transporter 2; TFE3: transcription factor E3; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Karla Alvarez-Valadez
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Faculté de Médecine, Université Paris Saclay, Paris, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion, INSERM UMRS 1134, BIGR, DSIMB Bioinformatics team, Paris, France
| | - Marion Leduc
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Lionel Guittat
- Laboratoire d’Optique et Biosciences, École Polytechnique, CNRS UMR7645, INSERM U1182, Institut Polytechnique de Paris, Palaiseau, France
- Santé, Médecine, Biologie Humaine (SMBH), Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Faculté de Médecine, Université Paris Saclay, Paris, France
| | - Alexandra Muller
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Sabrina Forveille
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Alexandre G de Brevern
- Université Paris Cité and Université de la Réunion, INSERM UMRS 1134, BIGR, DSIMB Bioinformatics team, Paris, France
| | - Harald Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Jonathan G Pol
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Institut du Cancer Paris CARPEM, Paris, France
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| |
Collapse
|
2
|
Chen R, Chen T, Li X, Yu J, Lin M, Wen S, Zhang M, Chen J, Yi B, Zhong H, Li Z. SREBP2 as a central player in cancer progression: potential for targeted therapeutics. Front Pharmacol 2025; 16:1535691. [PMID: 40308757 PMCID: PMC12041066 DOI: 10.3389/fphar.2025.1535691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Recent studies have identified the reprogramming of lipid metabolism as a critical hallmark of malignancy. Enhanced cholesterol uptake and increased cholesterol biosynthesis significantly contribute to the rapid growth of tumors, with cholesterol also playing essential roles in cellular signaling pathways. Targeting cholesterol metabolism has emerged as a promising therapeutic strategy in oncology. The sterol regulatory element-binding protein-2 (SREBP2) serves as a primary transcriptional regulator of genes involved in cholesterol biosynthesis and is crucial for maintaining cholesterol homeostasis. Numerous studies have reported the upregulation of SREBP2 across various cancers, facilitating tumor progression. This review aims to provide a comprehensive overview of the structure, biological functions, and regulatory mechanisms of SREBP2. Furthermore, we summarize that SREBP2 plays a crucial role in various cancers and tumor microenvironment primarily by regulating cholesterol, as well as through several non-cholesterol pathways. We also particularly emphasize therapeutic agents targeting SREBP2 that are currently under investigation. This review seeks to enhance our understanding of SREBP2's involvement in cancer and provide theoretical references for cancer therapies that target SREBP2.
Collapse
Affiliation(s)
- Ruiqi Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiang Li
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junfeng Yu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Lin
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siqi Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Man Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinchi Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bei Yi
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huage Zhong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Bernhard C, Geles K, Pawlak G, Dhifli W, Dispot A, Dusol J, Kondratova M, Martin S, Messé M, Reita D, Tulasne D, Van Seuningen I, Entz-Werle N, Ciafrè SA, Dontenwill M, Elati M. A coregulatory influence map of glioblastoma heterogeneity and plasticity. NPJ Precis Oncol 2025; 9:110. [PMID: 40234567 PMCID: PMC12000621 DOI: 10.1038/s41698-025-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
We present GBM-cRegMap, an online resource providing a comprehensive coregulatory influence network perspective on glioblastoma (GBM) heterogeneity and plasticity. Using representation learning algorithms, we derived two components of this resource: GBM-CoRegNet, a highly specific coregulatory network of tumor cells, and GBM-CoRegMap, a unified network influence map based on 1612 tumors from 16 studies. As a widely applicable closed-loop system connecting cellular models and tumors, GBM-cRegMap will provide the GBM research community with an easy-to-use web tool ( https://gbm.cregmap.com ) that maps any existing or newly generated transcriptomic "query" data to a reference coregulatory network and a large-scale manifold of disease heterogeneity. Using GBM-cRegMap, we demonstrated the synergy between the two components by refining the molecular classification of GBM, identifying potential key regulators, and aligning the transcriptional profiles of tumors and in vitro models. Through the amalgamation of a vast dataset, we validated the proneural (PN)-mesenchymal (MES) axis and identified three subclasses of classical (CL) tumors: astrocyte-like (CL-A), epithelial basal-like (CL-B), and cilium-rich (CL-C). We revealed the CL-C subclass, an intermediate state demonstrating the plasticity of GBM cells along the PN-MES axis under chemotherapy. We identified key regulators, such as PAX8, and NKX2.5, potentially involved in temozolomide (TMZ) resistance. Notably, NKX2.5, more expressed in higher-grade gliomas, negatively impacts patient survival, and regulates genes involved in glucose metabolism.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Konstantinos Geles
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Geoffrey Pawlak
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Wajdi Dhifli
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Aurélien Dispot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Jules Dusol
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Maria Kondratova
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Sophie Martin
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Mélissa Messé
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Damien Reita
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67200, Strasbourg, France
| | - David Tulasne
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Natacha Entz-Werle
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098, Strasbourg, France
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | | | - Mohamed Elati
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France.
| |
Collapse
|
4
|
Patat J, Schauer K, Lachuer H. Trafficking in cancer: from gene deregulation to altered organelles and emerging biophysical properties. Front Cell Dev Biol 2025; 12:1491304. [PMID: 39902278 PMCID: PMC11788300 DOI: 10.3389/fcell.2024.1491304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/10/2024] [Indexed: 02/05/2025] Open
Abstract
Intracellular trafficking supports all cell functions maintaining the exchange of material between membrane-bound organelles and the plasma membrane during endocytosis, cargo sorting, and exocytosis/secretion. Several proteins of the intracellular trafficking machinery are deregulated in diseases, particularly cancer. This complex and deadly disease stays a heavy burden for society, despite years of intense research activity. Here, we give an overview about trafficking proteins and highlight that in addition to their molecular functions, they contribute to the emergence of intracellular organelle landscapes. We review recent evidence of organelle landscape alterations in cancer. We argue that focusing on organelles, which represent the higher-order, cumulative behavior of trafficking regulators, could help to better understand, describe and fight cancer. In particular, we propose adopting a physical framework to describe the organelle landscape, with the goal of identifying the key parameters that are crucial for a stable and non-random organelle organization characteristic of healthy cells. By understanding these parameters, we may gain insights into the mechanisms that lead to a pathological organelle spatial organization, which could help explain the plasticity of cancer cells.
Collapse
Affiliation(s)
- Julie Patat
- Cell Biology of Organelle Networks Team, Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Kristine Schauer
- Cell Biology of Organelle Networks Team, Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
- Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Hugo Lachuer
- Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
5
|
Maghe C, Gavard J. Protocol for qualitative analysis of lysosome immunoprecipitation from patient-derived glioblastoma stem-like cells. STAR Protoc 2024; 5:103121. [PMID: 38850538 PMCID: PMC11215108 DOI: 10.1016/j.xpro.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Lysosomes are critical for the sustenance of glioblastoma stem-like cells (GSCs) properties. We present a protocol to enrich and purify lysosomes from patient-derived GSCs in culture. We describe the steps required to stably express a tagged lysosomal protein in GSCs, mechanically lyse cells, magnetically immunopurify lysosomes, and qualitatively assess these organelles. We then detail the procedure for retrieving intact and purified lysosomes from GSCs. We also specify cell culture conditions, storage procedures, and sample preparation for immunoblotting. For complete details on the use and execution of this protocol, please refer to Maghe et al.1.
Collapse
Affiliation(s)
- Clément Maghe
- Team SOAP, CRCI(2)NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Julie Gavard
- Team SOAP, CRCI(2)NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France; Institut de Cancérologie de l'Ouest, Saint Herblain, France.
| |
Collapse
|
6
|
Aldaz P, Olias-Arjona A, Lasheras-Otero I, Ausin K, Redondo-Muñoz M, Wellbrock C, Santamaria E, Fernandez-Irigoyen J, Arozarena I. Drug-Induced Reorganisation of Lipid Metabolism Limits the Therapeutic Efficacy of Ponatinib in Glioma Stem Cells. Pharmaceutics 2024; 16:728. [PMID: 38931850 PMCID: PMC11206984 DOI: 10.3390/pharmaceutics16060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The standard of care for glioblastoma (GBM) involves surgery followed by adjuvant radio- and chemotherapy, but often within months, patients relapse, and this has been linked to glioma stem cells (GSCs), self-renewing cells with increased therapy resistance. The identification of the epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR) as key players in gliomagenesis inspired the development of inhibitors targeting these tyrosine kinases (TKIs). However, results from clinical trials testing TKIs have been disappointing, and while the role of GSCs in conventional therapy resistance has been extensively studied, less is known about resistance of GSCs to TKIs. In this study, we have used compartmentalised proteomics to analyse the adaptive response of GSCs to ponatinib, a TKI with activity against PDGFR. The analysis of differentially expressed proteins revealed that GSCs respond to ponatinib by broadly rewiring lipid metabolism, involving fatty acid beta-oxidation, cholesterol synthesis, and sphingolipid degradation. Inhibiting each of these metabolic pathways overcame ponatinib adaptation of GSCs, but interrogation of patient data revealed sphingolipid degradation as the most relevant pathway in GBM. Our data highlight that targeting lipid metabolism, and particularly sphingolipid degradation in combinatorial therapies, could improve the outcome of TKI therapies using ponatinib in GBM.
Collapse
Affiliation(s)
- Paula Aldaz
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (A.O.-A.); (I.L.-O.); (M.R.-M.); (C.W.)
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
| | - Ana Olias-Arjona
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (A.O.-A.); (I.L.-O.); (M.R.-M.); (C.W.)
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
| | - Irene Lasheras-Otero
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (A.O.-A.); (I.L.-O.); (M.R.-M.); (C.W.)
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
| | - Karina Ausin
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Marta Redondo-Muñoz
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (A.O.-A.); (I.L.-O.); (M.R.-M.); (C.W.)
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
| | - Claudia Wellbrock
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (A.O.-A.); (I.L.-O.); (M.R.-M.); (C.W.)
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
- Department of Health Sciences, Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Enrique Santamaria
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Joaquin Fernandez-Irigoyen
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Imanol Arozarena
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (A.O.-A.); (I.L.-O.); (M.R.-M.); (C.W.)
- Health Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain; (K.A.); (E.S.); (J.F.-I.)
| |
Collapse
|
7
|
Pećina-Šlaus N, Hrašćan R. Glioma Stem Cells-Features for New Therapy Design. Cancers (Basel) 2024; 16:1557. [PMID: 38672638 PMCID: PMC11049195 DOI: 10.3390/cancers16081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|