1
|
Boris-Lawrie K, Liebau J, Hayir A, Heng X. Emerging Roles of m7G-Cap Hypermethylation and Nuclear Cap-Binding Proteins in Bypassing Suppression of eIF4E-Dependent Translation. Viruses 2025; 17:372. [PMID: 40143300 PMCID: PMC11946201 DOI: 10.3390/v17030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Translation regulation is essential to the survival of hosts. Most translation initiation falls under the control of the mTOR pathway, which regulates protein production from mono-methyl-guanosine (m7G) cap mRNAs. However, mTOR does not regulate all translation; hosts and viruses alike employ alternative pathways, protein factors, and internal ribosome entry sites to bypass mTOR. Trimethylguanosine (TMG)-caps arise from hypermethylation of pre-existing m7G-caps by the enzyme TGS1 and are modifications known for snoRNA, snRNA, and telomerase RNA. New findings originating from HIV-1 research reveal that TMG-caps are present on mRNA and license translation via an mTOR-independent pathway. Research has identified TMG-capping of selenoprotein mRNAs, junD, TGS1, DHX9, and retroviral transcripts. TMG-mediated translation may be a missing piece for understanding protein synthesis in cells with little mTOR activity, including HIV-infected resting T cells and nonproliferating cancer cells. Viruses display a nuanced interface with mTOR and have developed strategies that take advantage of the delicate interplay between these translation pathways. This review covers the current knowledge of the TMG-translation pathway. We discuss the intimate relationship between metabolism and translation and explore how this is exploited by HIV-1 in the context of CD4+ T cells. We postulate that co-opting both translation pathways provides a winning strategy for HIV-1 to dictate the sequential synthesis of its proteins and balance viral production with host cell survival.
Collapse
Affiliation(s)
- Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Jessica Liebau
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Abdullgadir Hayir
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Bernhard H, Petržílková H, Popelářová B, Ziemkiewicz K, Bartosik K, Warmiński M, Tengo L, Gröger H, Dolce LG, Mackereth CD, Micura R, Jemielity J, Kowalinski E. Structural basis of Spliced Leader RNA recognition by the Trypanosoma brucei cap-binding complex. Nat Commun 2025; 16:685. [PMID: 39814716 PMCID: PMC11735809 DOI: 10.1038/s41467-024-55373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
Kinetoplastids are a clade of eukaryotic protozoans that include human parasitic pathogens like trypanosomes and Leishmania species. In these organisms, protein-coding genes are transcribed as polycistronic pre-mRNAs, which need to be processed by the coupled action of trans-splicing and polyadenylation to yield monogenic mature mRNAs. During trans-splicing, a universal RNA sequence, the spliced leader RNA (SL RNA) mini-exon, is added to the 5'-end of each mRNA. The 5'-end of this mini-exon carries a hypermethylated cap structure and is bound by a trypanosomatid-specific cap-binding complex (CBC). The function of three of the kinetoplastid CBC subunits is unknown, but an essential role in cap-binding and trans-splicing has been suggested. Here, we report cryo-EM structures that reveal the molecular architecture of the Trypanosoma brucei CBC (TbCBC) complex. We find that TbCBC interacts with two distinct features of the SL RNA. The TbCBP20 subunit interacts with the m7G cap while TbCBP66 recognizes double-stranded portions of the SL RNA. Our findings pave the way for future research on mRNA maturation in kinetoplastids. Moreover, the observed structural similarities and differences between TbCBC and the mammalian cap-binding complex will be crucial for considering the potential of TbCBC as a target for anti-trypanosomatid drug development.
Collapse
Affiliation(s)
- Harald Bernhard
- EMBL Grenoble, 71 Avenue des Martyrs, Grenoble, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | | | - Barbora Popelářová
- EMBL Grenoble, 71 Avenue des Martyrs, Grenoble, France
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Marcin Warmiński
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Laura Tengo
- EMBL Grenoble, 71 Avenue des Martyrs, Grenoble, France
| | - Henri Gröger
- EMBL Grenoble, 71 Avenue des Martyrs, Grenoble, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Luciano G Dolce
- EMBL Grenoble, 71 Avenue des Martyrs, Grenoble, France
- Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble-Alpes, Grenoble, France
| | - Cameron D Mackereth
- University of Bordeaux, INSERM, CNRS, ARNA Laboratory, U1212, UMR 5320, Bordeaux, France
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
3
|
Wu G, Rouvière JO, Schmid M, Heick Jensen T. RNA 3'end tailing safeguards cells against products of pervasive transcription termination. Nat Commun 2024; 15:10446. [PMID: 39617768 PMCID: PMC11609308 DOI: 10.1038/s41467-024-54834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/22/2024] [Indexed: 05/17/2025] Open
Abstract
Premature transcription termination yields a wealth of unadenylated (pA-) RNA. Although this can be targeted for degradation by the Nuclear EXosome Targeting (NEXT) complex, possible backup pathways remain poorly understood. Here, we find increased levels of 3' end uridylated and adenylated RNAs upon NEXT inactivation. U-tailed RNAs are mostly short and modified by the cytoplasmic tailing enzymes, TUT4/7, following their PHAX-dependent nuclear export and prior to their degradation by the cytoplasmic exosome or the exoribonuclease DIS3L2. Longer RNAs are instead adenylated redundantly by enzymes TENT2, PAPOLA and PAPOLG. These transcripts are either degraded via the nuclear Poly(A) tail eXosome Targeting (PAXT) connection or exported and removed by the cytoplasmic exosome in a translation-dependent manner. Failure to do so decreases global translation and induces cell death. We conclude that post-transcriptional 3' end modification and removal of excess pA- RNA is achieved by tailing enzymes and export factors shared with productive RNA pathways.
Collapse
Affiliation(s)
- Guifen Wu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jérôme O Rouvière
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- QIAGEN Aarhus A/S, Aarhus, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Garland W, Jensen TH. Nuclear sorting of short RNA polymerase II transcripts. Mol Cell 2024; 84:3644-3655. [PMID: 39366352 DOI: 10.1016/j.molcel.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Mammalian genomes produce an abundance of short RNA. This is, to a large extent, due to the genome-wide and spurious activity of RNA polymerase II (RNAPII). However, it is also because the vast majority of initiating RNAPII, regardless of the transcribed DNA unit, terminates within a ∼3-kb early "pausing zone." Given that the resultant RNAs constitute both functional and non-functional species, their proper sorting is critical. One way to think about such quality control (QC) is that transcripts, from their first emergence, are relentlessly targeted by decay factors, which may only be avoided by engaging protective processing pathways. In a molecular materialization of this concept, recent progress has found that both "destructive" and "productive" RNA effectors assemble at the 5' end of capped RNA, orchestrated by the essential arsenite resistance protein 2 (ARS2) protein. Based on this principle, we here discuss early QC mechanisms and how these might sort short RNAs to their final fates.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, Denmark.
| |
Collapse
|
5
|
Rambout X, Maquat LE. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet 2024; 25:679-697. [PMID: 38637632 PMCID: PMC11408106 DOI: 10.1038/s41576-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|