1
|
Zhao B, Suh J, Zhang Y, Yin E, Kadota-Watanabe C, Chang IW, Yaung J, Lao-Ngo I, Young NM, Kim RH, Klein OD, Hong C. p75 neurotrophin receptor regulates craniofacial growth and morphology in postnatal development. Front Cell Dev Biol 2025; 13:1569533. [PMID: 40171227 PMCID: PMC11959563 DOI: 10.3389/fcell.2025.1569533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Craniofacial abnormalities are among the most prevalent congenital defects, significantly affecting appearance, function, and quality of life. While the role of genetic mutations in craniofacial malformations is recognized, the underlying molecular mechanisms remain poorly understood. In this study, we investigate the role of p75 neurotrophin receptor (p75NTR) in craniofacial development by comparing wild-type (p75NTR+/+) mice against p75NTR-deficient (p75NTR-/-) knockout mice. We employed histology, micro-CT surface distance, volumetric analysis, and geometric morphometric analysis to assess craniofacial development and growth. On postnatal day 7 (P7), p75NTR-/- mice exhibited reduced skull length compared to wild-type controls. By P28, micro-CT analysis revealed significant reductions in calvarial bone volume and trabecular bone thickness in p75NTR-/- mice. Geometric morphometric analysis identified significant shape alterations in the nasal, parietal, and occipital regions, with p75NTR-/- mice showing a shortened cranium and tapered nasal bone morphology. These findings highlight the critical role of p75NTR in regulating postnatal craniofacial development. Disruption of p75NTR signaling impairs both the growth and morphological integrity of craniofacial structures, which may contribute to the pathogenesis of congenital craniofacial abnormalities. In the future, a better understanding of the molecular mechanisms through which p75NTR mediates craniofacial development may offer valuable insights for future targeted therapeutic strategies for craniofacial defects.
Collapse
Affiliation(s)
- Byron Zhao
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jinsook Suh
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Yan Zhang
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Yin
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Chiho Kadota-Watanabe
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
- Division of Maxillofacial and Neck Reconstruction, Department of Maxillofacial Orthognathics, Institute of Science Tokyo, Tokyo, Japan
| | - In Won Chang
- Shapiro Family Laboratory of Viral Oncology and Aging Research, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jun Yaung
- Shapiro Family Laboratory of Viral Oncology and Aging Research, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isabelle Lao-Ngo
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Nathan M. Young
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Reuben H. Kim
- Shapiro Family Laboratory of Viral Oncology and Aging Research, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ophir D. Klein
- Department of Orofacial Sciences, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, CA, United States
| | - Christine Hong
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single-cell sequencing provides clues about the developmental genetic basis of evolutionary adaptations in syngnathid fishes. eLife 2025; 13:RP97764. [PMID: 39898521 PMCID: PMC11790252 DOI: 10.7554/elife.97764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Clayton M Small
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- School of Computer and Data Science, University of OregonEugeneUnited States
| | - Susan Bassham
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Micah A Woods
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - William A Cresko
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| |
Collapse
|
3
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|