Khan E, Saghafi S, Diekman CO, Rotstein HG. The emergence of polyglot entrainment responses to periodic inputs in vicinities of Hopf bifurcations in slow-fast systems.
CHAOS (WOODBURY, N.Y.) 2022;
32:063137. [PMID:
35778129 DOI:
10.1063/5.0079198]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Several distinct entrainment patterns can occur in the FitzHugh-Nagumo (FHN) model under external periodic forcing. Investigating the FHN model under different types of periodic forcing reveals the existence of multiple disconnected 1:1 entrainment segments for constant, low enough values of the input amplitude when the unforced system is in the vicinity of a Hopf bifurcation. This entrainment structure is termed polyglot to distinguish it from the single 1:1 entrainment region (monoglot) structure typically observed in Arnold tongue diagrams. The emergence of polyglot entrainment is then explained using phase-plane analysis and other dynamical system tools. Entrainment results are investigated for other slow-fast systems of neuronal, circadian, and glycolytic oscillations. Exploring these models, we found that polyglot entrainment structure (multiple 1:1 regions) is observed when the unforced system is in the vicinity of a Hopf bifurcation and the Hopf point is located near a knee of a cubic-like nullcline.
Collapse