1
|
Guérin C, N'Diaye AB, Gressin L, Mogilner A, Théry M, Blanchoin L, Colin A. Balancing limited resources in actin network competition. Curr Biol 2025; 35:500-513.e5. [PMID: 39793569 DOI: 10.1016/j.cub.2024.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources. Moreover, the coexistence of networks with various strengths is key to cell adaptation to external changes. However, a comprehensive view of how these networks coexist in this competitive environment, where resources are limited, is still lacking. To address this question, we used a reconstituted system, in closed microwells, consisting of beads propelled by actin polymerization or micropatterns functionalized with lipids capable of initiating polymerization close to a membrane. This system enabled us to build dynamic actin architectures, competing for a limited pool of proteins, over a period of hours. We demonstrated the importance of protein turnover for the coexistence of actin networks, showing that it ensures resource distribution between weak and strong networks. However, when competition becomes too intense, turnover alone is insufficient, leading to a selection process that favors the strongest networks. Consequently, we emphasize the importance of competition strength, which is defined by the turnover rate, the amount of available protein, and the number of competing structures. More generally, this work illustrates how turnover allows biological populations with various competition strengths to coexist despite resource constraints.
Collapse
Affiliation(s)
- Christophe Guérin
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Anne-Betty N'Diaye
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Laurène Gressin
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Manuel Théry
- Cytomorpholab, Institut Chimie Biologie Innovation, Institut Pierre-Gilles de Gennes, Université Paris Sciences et Lettres, CEA, ESPCI, 6 rue Jean Calvin, 75005 Paris, France.
| | - Laurent Blanchoin
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France; Cytomorpholab, Institut Chimie Biologie Innovation, Institut Pierre-Gilles de Gennes, Université Paris Sciences et Lettres, CEA, ESPCI, 6 rue Jean Calvin, 75005 Paris, France.
| | - Alexandra Colin
- Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France.
| |
Collapse
|
2
|
Suarez C, Kovar DR. Molecular biology: In competition, actin filament turnover saves the day. Curr Biol 2025; 35:R101-R104. [PMID: 39904306 DOI: 10.1016/j.cub.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Cellular actin cytoskeleton networks compete for limited actin monomers. New in vitro reconstitutions with purified proteins reveal that without network turnover, the strongest networks monopolize all the resources. However, with turnover, weaker networks survive and coexist with stronger networks.
Collapse
Affiliation(s)
- Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Banerjee DS, Banerjee S. Emergence and maintenance of variable-length actin filaments in a limiting pool of building blocks. Biophys J 2022; 121:2436-2448. [PMID: 35598045 DOI: 10.1016/j.bpj.2022.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the mean length of individual actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different lengths using the same set of molecular building blocks. Here we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth rate modulation by actin binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneity. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning F-actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths. SIGNIFICANCE: Actin filaments organize into different functional network architectures within eukaryotic cells. To maintain distinct actin network architectures, it is essential to regulate the lengths of actin filaments. While the mechanisms controlling the lengths of individual actin filaments have been extensively studied, the regulation of length heterogeneity in actin filament populations is not well understood. Here we show that the modulation of actin filament growth and nucleation rates by actin binding proteins can regulate actin length distribution and create distinct sub-populations with different lengths. In particular, by tuning concentrations of formin, profilin and capping proteins, various aspects of actin filament length distribution can be controlled. Insights gained from our results may have significant implications for the regulation of actin filament length heterogeneity and architecture within a cell.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213, USA
| | - Shiladitya Banerjee
- Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Kadzik RS, Homa KE, Kovar DR. F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation. Annu Rev Cell Dev Biol 2021; 36:35-60. [PMID: 33021819 DOI: 10.1146/annurev-cellbio-032320-094706] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.
Collapse
Affiliation(s)
- Rachel S Kadzik
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Molecular BioSciences, Northwestern University, Evanston, Illinois 60208, USA;
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; ,
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|