1
|
Komikawa T, Okochi M, Tanaka M. Exploration and analytical techniques for membrane curvature-sensing proteins in bacteria. J Bacteriol 2025; 207:e0048224. [PMID: 40135904 PMCID: PMC12004969 DOI: 10.1128/jb.00482-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The mechanism by which cells regulate protein localization is an important topic in the field of bacterial biology. In certain instances, the morphology of the biological membrane has been demonstrated to function as a spatial cue for the subcellular localization of proteins. These proteins are capable of sensing membrane curvature and are involved in a number of physiological functions such as cytokinesis and the formation of membrane-bound organelles. This review presents recent advances in the in vitro evaluation of curvature-sensing properties using artificially controlled membranes and purified proteins, as well as microscopic live cell assays. However, these evaluation methodologies often require sophisticated experiments, and the number of identified curvature sensors remains limited. Thus, we present a comprehensive exploration of recently reported curvature-sensing proteins. Subsequently, we summarize the known curvature-sensing proteins in bacteria, in conjunction with the analytical methodologies employed in this field. Finally, future prospects and further requirements in the study of curvature-sensing proteins are discussed.
Collapse
Affiliation(s)
- Takumi Komikawa
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| | - Mina Okochi
- School of Materials and Chemical Technology, Institute of Science Tokyo, Meguro, Tokyo, Japan
| | - Masayoshi Tanaka
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Curtis BN, Vogt EJD, Edelmaier C, Gladfelter AS. Lipid packing and local geometry influence septin curvature sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637894. [PMID: 39990479 PMCID: PMC11844530 DOI: 10.1101/2025.02.12.637894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Septins assemble into scaffolds that direct cell growth and morphology that are often localized to the plasma membrane. While septins preferentially bind convex membranes via amphipathic helices, their assembly on varied geometries in cells suggests additional localization cues. We tested the hypothesis that lipid composition directs septin assembly through lipid packing properties. Lipid mixtures varying in lipid packing were designed by molecular dynamics simulations and incorporated onto supported lipid bilayers to measure septin adsorption in vitro. Septins strongly favor loosely-packed, disordered lipid bilayers but additional geometry cues act in conjunction with this membrane property. Introducing tighter lipid packing in cells disrupted septin structures in a curvature dependent manner, specifically limiting septin assembly and retention along flat regions of the plasma membrane. This work demonstrates that packing defects and geometry jointly regulate septin localization and highlights how multiple membrane properties are integrated to control organization of the septin cytoskeleton. Summary Localization of the septin cytoskeleton is controlled by regulatory factors, membrane curvature, and charge. In this study, changes to lipid composition that modulate lipid packing defects are found to impact septin assemblies in vitro and in cells.
Collapse
|
3
|
McQuillen R, Perez AJ, Yang X, Bohrer CH, Smith EL, Chareyre S, Tsui HCT, Bruce KE, Hla YM, McCausland JW, Winkler ME, Goley ED, Ramamurthi KS, Xiao J. Light-dependent modulation of protein localization and function in living bacteria cells. Nat Commun 2024; 15:10746. [PMID: 39737933 PMCID: PMC11685620 DOI: 10.1038/s41467-024-54974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amilcar J Perez
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher H Bohrer
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika L Smith
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Joshua W McCausland
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Erin D Goley
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Curtis BN, Gladfelter AS. Drivers of Morphogenesis: Curvature Sensor Self-Assembly at the Membrane. Cold Spring Harb Perspect Biol 2024; 16:a041528. [PMID: 38697653 PMCID: PMC11610757 DOI: 10.1101/cshperspect.a041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This review examines the relationships between membrane chemistry, curvature-sensing proteins, and cellular morphogenesis. Curvature-sensing proteins are often orders of magnitude smaller than the membrane curvatures they localize to. How are nanometer-scale proteins used to sense micrometer-scale membrane features? Here, we trace the journey of curvature-sensing proteins as they engage with lipid membranes through a combination of electrostatic and hydrophobic interactions. We discuss how curvature sensing hinges on membrane features like lipid charge, packing, and the directionality of membrane curvature. Once bound to the membrane, many curvature sensors undergo self-assembly (i.e., they oligomerize or form higher-order assemblies that are key for initiating and regulating cell shape transformations). Central to these discussions are the micrometer-scale curvature-sensing proteins' septins. By discussing recent literature surrounding septin membrane association, assembly, and their many functions in morphogenesis with support from other well-studied curvature sensors, we aim to synthesize possible mechanisms underlining cell shape sensing.
Collapse
Affiliation(s)
- Brandy N Curtis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
5
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 PMCID: PMC12005717 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
6
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. SCIENCE ADVANCES 2024; 10:eadq0791. [PMID: 39423260 PMCID: PMC11488536 DOI: 10.1126/sciadv.adq0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation nonuniformly to secure against the possibility that favorable growth conditions, which put sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway containing the proteins ShfA (YabQ) and ShfP (YvnB) that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early use a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay nonsporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
Affiliation(s)
- Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hyomoon Cho
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carissa Chan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Nipper
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Jiang S, Çelen G, Glatter T, Niederholtmeyer H, Yuan J. A cell-free system for functional studies of small membrane proteins. J Biol Chem 2024; 300:107850. [PMID: 39362471 PMCID: PMC11539335 DOI: 10.1016/j.jbc.2024.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Numerous small proteins have been discovered across all domains of life, among which many are hydrophobic and predicted to localize to the cell membrane. Based on a few that are well-studied, small membrane proteins are regulators involved in various biological processes, such as cell signaling, nutrient transport, drug resistance, and stress response. However, the function of most identified small membrane proteins remains elusive. Their small size and hydrophobicity make protein production challenging, hindering function discovery. Here, we combined a cell-free system with lipid sponge droplets and synthesized small membrane proteins in vitro. Lipid sponge droplets contain a dense network of lipid bilayers, which accommodates and extracts newly synthesized small membrane proteins from the aqueous surroundings. Using small bacterial membrane proteins MgrB, SafA, and AcrZ as proof of principle, we showed that the in vitro-produced membrane proteins were functionally active, for example, modulating the activity of their target kinase as expected. The cell-free system produced small membrane proteins, including one from human, up to micromolar concentrations, indicating its high level of versatility and productivity. Furthermore, AcrZ produced in this system was used successfully for in vitro co-immunoprecipitations to identify interaction partners. This work presents a robust alternative approach for producing small membrane proteins, which opens a door to their function discovery in different domains of life.
Collapse
Affiliation(s)
- Shan Jiang
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany
| | - Gülce Çelen
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany
| | - Henrike Niederholtmeyer
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany; Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany.
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
8
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587046. [PMID: 38903092 PMCID: PMC11188070 DOI: 10.1101/2024.03.27.587046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation non-uniformly to secure against the possibility that favorable growth conditions, which puts sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early utilize a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay non-sporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
Affiliation(s)
- Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hyomoon Cho
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carissa Chan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Nipper
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Support Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Chareyre S, Li X, Anjuwon-Foster BR, Updegrove TB, Clifford S, Brogan AP, Su Y, Zhang L, Chen J, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during differentiation in Bacillus subtilis. Proc Natl Acad Sci U S A 2024; 121:e2400584121. [PMID: 38502707 PMCID: PMC10990147 DOI: 10.1073/pnas.2400584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | | - Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Anna P. Brogan
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | |
Collapse
|
10
|
Ye Y, Liang X, Wang G, Bewley MC, Hamamoto K, Liu X, Flanagan JM, Wang HG, Takahashi Y, Tian F. Identification of membrane curvature sensing motifs essential for VPS37A phagophore recruitment and autophagosome closure. Commun Biol 2024; 7:334. [PMID: 38491121 PMCID: PMC10942982 DOI: 10.1038/s42003-024-06026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.
Collapse
Affiliation(s)
- Yansheng Ye
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA.
| | - Xinwen Liang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guifang Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Maria C Bewley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Kouta Hamamoto
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xiaoming Liu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yoshinori Takahashi
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
11
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
12
|
Badvaram I, Camley BA. Physical limits to membrane curvature sensing by a single protein. Phys Rev E 2023; 108:064407. [PMID: 38243534 DOI: 10.1103/physreve.108.064407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/11/2023] [Indexed: 01/21/2024]
Abstract
Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments have revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated glass beads of 1-µm and 3-µm diameters, even though the septin is orders of magnitude smaller than the beads. This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent thermal fluctuations of the membrane, leading to discrepancies between the bead's curvature and the local membrane curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we investigate whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale curvature either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this, we develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus, membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association rates, we develop two classes of predictive models: (i) for proteins that maximally associate to a preferred curvature and (ii) for proteins with enhanced association rates above a threshold curvature. We find that the experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this dependence is limited by the fluctuations in membrane height and density.
Collapse
Affiliation(s)
- Indrajit Badvaram
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
13
|
Brantl S, Ul Haq I. Small proteins in Gram-positive bacteria. FEMS Microbiol Rev 2023; 47:fuad064. [PMID: 38052429 PMCID: PMC10730256 DOI: 10.1093/femsre/fuad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Inam Ul Haq
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
14
|
Nakaya Y, Uchiike M, Hattori M, Moriyama M, Abe K, Kim E, Eichenberger P, Imamura D, Sato T. Identification of CgeA as a glycoprotein that anchors polysaccharides to the spore surface in Bacillus subtilis. Mol Microbiol 2023; 120:384-396. [PMID: 37485949 DOI: 10.1111/mmi.15126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
The Bacillus subtilis spore is composed of a core, containing chromosomal DNA, surrounded by a cortex layer made of peptidoglycan, and a coat composed of concentric proteinaceous layers. A polysaccharide layer is added to the spore surface, and likely anchored to the crust, the coat outermost layer. However, the identity of the coat protein(s) to which the spore polysaccharides (SPS) are attached is uncertain. First, we showed that the crust proteins CotVWXYZ and CgeA were all contained in the peeled SPS layer obtained from a strain missing CotE, the outer coat morphogenetic protein, suggesting that the SPS is indeed bound to at least one of the spore surface proteins. Second, CgeA is known to be located at the most downstream position in the crust assembly pathway. An analysis of truncated variants of CgeA suggested that its N-terminal half is required for localization to the spore surface, while its C-terminal half is necessary for SPS addition. Third, an amino acid substitution strategy revealed that SPS was anchored at threonine 112 (T112), which constitutes a probable O-glycosylation site on CgeA. Our results indicated that CgeA is a glycoprotein required to initiate SPS assembly and serves as an anchor protein linking the crust and SPS layers.
Collapse
Affiliation(s)
- Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Miu Uchiike
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Mayuko Hattori
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Momoka Moriyama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Ella Kim
- Department of Biology, New York University, New York, New York, USA
| | | | - Daisuke Imamura
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Tsutomu Sato
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
15
|
Chareyre S, Li X, Anjuwon-Foster BR, Clifford S, Brogan A, Su Y, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during bacterial differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552768. [PMID: 37790399 PMCID: PMC10542145 DOI: 10.1101/2023.08.10.552768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that a unique feature of the sporulation septum, defined by the cell division machinery, drives the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Brogan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Kong M, D'Atri D, Bilotta MT, Johnson B, Updegrove TB, Gallardo DL, Machinandiarena F, Wu IL, Constantino MA, Hewitt SM, Tanner K, Fitzgerald DJ, Ramamurthi KS. Cell-specific cargo delivery using synthetic bacterial spores. Cell Rep 2023; 42:111955. [PMID: 36640333 PMCID: PMC10009695 DOI: 10.1016/j.celrep.2022.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Delivery of cancer therapeutics to non-specific sites decreases treatment efficacy while increasing toxicity. In ovarian cancer, overexpression of the cell surface marker HER2, which several therapeutics target, relates to poor prognosis. We recently reported the assembly of biocompatible bacterial spore-like particles, termed "SSHELs." Here, we modify SSHELs with an affibody directed against HER2 and load them with the chemotherapeutic agent doxorubicin. Drug-loaded SSHELs reduce tumor growth and increase survival with lower toxicity in a mouse tumor xenograft model compared with free drug and with liposomal doxorubicin by preferentially accumulating in the tumor mass. Target cells actively internalize and then traffic bound SSHELs to acidic compartments, whereupon the cargo is released to the cytosol in a pH-dependent manner. We propose that SSHELs represent a versatile strategy for targeted drug delivery, especially in cancer settings.
Collapse
Affiliation(s)
- Minsuk Kong
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Domenico D'Atri
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Teresa Bilotta
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bailey Johnson
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Devorah L Gallardo
- Laboratory Animal Sciences Program, Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Federico Machinandiarena
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Lin Wu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maira Alves Constantino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David J Fitzgerald
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Zeng J, Wang H, Dong M, Tian GB. Clostridioides difficile spore: coat assembly and formation. Emerg Microbes Infect 2022; 11:2340-2349. [PMID: 36032037 PMCID: PMC9542656 DOI: 10.1080/22221751.2022.2119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clostridioides difficile (C. difficile) is a Gram-positive, spore-forming, toxin-producing, obligate anaerobic bacterium. C. difficile infection (CDI) is the leading cause of healthcare-associated infective diarrhoea. The infection is mediated by the spore, a metabolically inactive form of C. difficile. The spore coat acts as a physical barrier to defend against chemical insults from hosts and natural environments. The composition of spore coat has already been revealed; therefore, the interactive networks of spore coat proteins and the dynamic process of coat assembly are the keys to design strategies to control and cure CDI. This review gives a brief discussion of the signal processing and transcriptional regulation of C. difficile sporulation initiation. Following the discussion, the spore formation is also introduced. Finally, this review mainly focuses on the spore coat assembly, a poorly understood process in C. difficile, and important proteins that have been studied.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hao Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Min Dong
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
18
|
Delerue T, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Dev Cell 2022; 57:344-360.e6. [PMID: 35065768 PMCID: PMC8991396 DOI: 10.1016/j.devcel.2021.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C. Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Lead contact,Correspondence:
| |
Collapse
|
19
|
Abstract
In recent years, there has been increased appreciation that a whole category of proteins, small proteins of around 50 amino acids or fewer in length, has been missed by annotation as well as by genetic and biochemical assays. With the increased recognition that small proteins are stable within cells and have regulatory functions, there has been intensified study of these proteins. As a result, important questions about small proteins in bacteria and archaea are coming to the fore. Here, we give an overview of these questions, the initial answers, and the approaches needed to address these questions more fully. More detailed discussions of how small proteins can be identified by ribosome profiling and mass spectrometry approaches are provided by two accompanying reviews (N. Vazquez-Laslop, C. M. Sharma, A. S. Mankin, and A. R. Buskirk, J Bacteriol 204:e00294-21, 2022, https://doi.org/10.1128/JB.00294-21; C. H. Ahrens, J. T. Wade, M. M. Champion, and J. D. Langer, J Bacteriol 204:e00353-21, 2022, https://doi.org/10.1128/JB.00353-21). We are excited by the prospects of new insights and possible therapeutic approaches coming from this emerging field.
Collapse
Affiliation(s)
- Todd Gray
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Microverse Cluster, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Yadavalli SS, Yuan J. Bacterial Small Membrane Proteins: the Swiss Army Knife of Regulators at the Lipid Bilayer. J Bacteriol 2022; 204:e0034421. [PMID: 34516282 PMCID: PMC8765417 DOI: 10.1128/jb.00344-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small membrane proteins represent a subset of recently discovered small proteins (≤100 amino acids), which are a ubiquitous class of emerging regulators underlying bacterial adaptation to environmental stressors. Until relatively recently, small open reading frames encoding these proteins were not designated genes in genome annotations. Therefore, our understanding of small protein biology was primarily limited to a few candidates associated with previously characterized larger partner proteins. Following the first systematic analyses of small proteins in Escherichia coli over a decade ago, numerous small proteins across different bacteria have been uncovered. An estimated one-third of these newly discovered proteins in E. coli are localized to the cell membrane, where they may interact with distinct groups of membrane proteins, such as signal receptors, transporters, and enzymes, and affect their activities. Recently, there has been considerable progress in functionally characterizing small membrane protein regulators aided by innovative tools adapted specifically to study small proteins. Our review covers prototypical proteins that modulate a broad range of cellular processes, such as transport, signal transduction, stress response, respiration, cell division, sporulation, and membrane stability. Thus, small membrane proteins represent a versatile group of physiology regulators at the membrane and the whole cell. Additionally, small membrane proteins have the potential for clinical applications, where some of the proteins may act as antibacterial agents themselves while others serve as alternative drug targets for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, USA
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
21
|
Tanaka M, Ueno Y, Miyake T, Sakuma T, Okochi M. Enrichment of membrane curvature-sensing proteins from Escherichia coli using spherical supported lipid bilayers. J Biosci Bioeng 2021; 133:98-104. [PMID: 34776361 DOI: 10.1016/j.jbiosc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Bacteria display dynamically organized curved membrane structures, especially during cell division. The importance of membrane curvature-sensing (MCS) proteins for the recognition and regulation of biological membrane morphologies has predominately been investigated in eukaryotic cells. Recently, a technique for screening MCS proteins from solutions that contain peripheral membrane proteins was developed, and MCS protein candidates were identified from mammalian cells. The technique uses differently sized spherical supported lipid bilayers (SSLBs), which consist of spherical SiO2 particles covered with a lipid bilayer. To discriminate between proteins possessing the MCS property, SSLBs with the same surface area were used in a comparative sedimentation assay with shotgun proteome analysis. In this study, to prove that the technique could be applied to other samples, MCS proteins in Escherichia coli were investigated. Through a comparative proteomic study, 35 and 47 proteins were enriched as candidate MCS proteins preferentially bound to SSLBs of 100 nm and 1000 nm, respectively. Among the identified MCS candidate proteins, FtsZ and SecA were further examined for their MCS properties using the two SSLB sizes, which revealed a high binding affinity for the low membrane curvature (large SSLB). This is the first study to explore MCS proteins in prokaryotic cells and the MCS property of the SecA protein. The results demonstrate a method to enrich MCS proteins that could be utilized to better elucidate membrane dynamics and protein function expression on curved membrane structures in prokaryotic cells.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yu Ueno
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takahiro Miyake
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takahiro Sakuma
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
22
|
Phillips DA, Zacharoff LA, Hampton CM, Chong GW, Malanoski AP, Metskas LA, Xu S, Bird LJ, Eddie BJ, Miklos AE, Jensen GJ, Drummy LF, El-Naggar MY, Glaven SM. A bacterial membrane sculpting protein with BAR domain-like activity. eLife 2021; 10:60049. [PMID: 34643180 PMCID: PMC8687657 DOI: 10.7554/elife.60049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here, we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryo-TEM reveals that a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild-type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.
Collapse
Affiliation(s)
- Daniel A Phillips
- Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, United States
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Cheri M Hampton
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Grace W Chong
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Lauren Ann Metskas
- Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Lina J Bird
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Brian J Eddie
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Aleksandr E Miklos
- BioSciences Division, BioChemistry Branch, US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, United States
| | - Grant J Jensen
- Biology and Bioengineering, California Institute of Technology, Pasadena, United States
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
| | - Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| |
Collapse
|
23
|
Woods BL, Cannon KS, Vogt EJD, Crutchley JM, Gladfelter AS. Interplay of septin amphipathic helices in sensing membrane-curvature and filament bundling. Mol Biol Cell 2021; 32:br5. [PMID: 34319771 PMCID: PMC8684760 DOI: 10.1091/mbc.e20-05-0303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the nonessential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In a septin mutant strain lacking a fully functional Cdc12 AH domain (cdc12-6), the C-terminal extension of Shs1, containing an AH domain, becomes essential. Additionally, we find that the Cdc12 AH domain is important for regulating septin filament bundling, suggesting septin AH domains have multiple, distinct functions and that bundling and membrane binding may be coordinately controlled.
Collapse
Affiliation(s)
- Benjamin L Woods
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin S Cannon
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John M Crutchley
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
24
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, Koonin EV. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 2021; 49:D274-D281. [PMID: 33167031 DOI: 10.1093/nar/gkaa1018] [Citation(s) in RCA: 493] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
The Clusters of Orthologous Genes (COG) database, also referred to as the Clusters of Orthologous Groups of proteins, was created in 1997 and went through several rounds of updates, most recently, in 2014. The current update, available at https://www.ncbi.nlm.nih.gov/research/COG, substantially expands the scope of the database to include complete genomes of 1187 bacteria and 122 archaea, typically, with a single genome per genus. In addition, the current version of the COGs includes the following new features: (i) the recently deprecated NCBI's gene index (gi) numbers for the encoded proteins are replaced with stable RefSeq or GenBank\ENA\DDBJ coding sequence (CDS) accession numbers; (ii) COG annotations are updated for >200 newly characterized protein families with corresponding references and PDB links, where available; (iii) lists of COGs grouped by pathways and functional systems are added; (iv) 266 new COGs for proteins involved in CRISPR-Cas immunity, sporulation in Firmicutes and photosynthesis in cyanobacteria are included; and (v) the database is made available as a web page, in addition to FTP. The current release includes 4877 COGs. Future plans include further expansion of the COG collection by adding archaeal COGs (arCOGs), splitting the COGs containing multiple paralogs, and continued refinement of COG annotations.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Roberto Vera Alvarez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
26
|
Lipid flip-flop and desorption from supported lipid bilayers is independent of curvature. PLoS One 2020; 15:e0244460. [PMID: 33378379 PMCID: PMC7773258 DOI: 10.1371/journal.pone.0244460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/09/2020] [Indexed: 01/10/2023] Open
Abstract
Flip-flop of lipids of the lipid bilayer (LBL) constituting the plasma membrane (PM) plays a crucial role in a myriad of events ranging from cellular signaling and regulation of cell shapes to cell homeostasis, membrane asymmetry, phagocytosis, and cell apoptosis. While extensive research has been conducted to probe the lipid flip flop of planar lipid bilayers (LBLs), less is known regarding lipid flip-flop for highly curved, nanoscopic LBL systems despite the vast importance of membrane curvature in defining the morphology of cells and organelles and in maintaining a variety of cellular functions, enabling trafficking, and recruiting and localizing shape-responsive proteins. In this paper, we conduct molecular dynamics (MD) simulations to study the energetics, structure, and configuration of a lipid molecule undergoing flip-flop and desorption in a highly curved LBL, represented as a nanoparticle-supported lipid bilayer (NPSLBL) system. We compare our findings against those of a planar substrate supported lipid bilayer (PSSLBL). Our MD simulation results reveal that despite the vast differences in the curvature and other curvature-dictated properties (e.g., lipid packing fraction, difference in the number of lipids between inner and outer leaflets, etc.) between the NPSLBL and the PSSLBL, the energetics of lipid flip-flop and lipid desorption as well as the configuration of the lipid molecule undergoing lipid flip-flop are very similar for the NPSLBL and the PSSLBL. In other words, our results establish that the curvature of the LBL plays an insignificant role in lipid flip-flop and desorption.
Collapse
|
27
|
Jing H, Wang Y, Desai PR, Ramamurthi KS, Das S. Formation and Properties of a Self-Assembled Nanoparticle-Supported Lipid Bilayer Probed through Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5524-5533. [PMID: 32362127 PMCID: PMC7494177 DOI: 10.1021/acs.langmuir.0c00593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have carried out coarse-grained molecular dynamics (MD) simulations to study the self-assembly procedure of a system of randomly placed lipid molecules, water beads, and a nanoparticle (NP). The self-assembly results in the formation of the nanoparticle-supported lipid bilayer (NPSLBL), with the self-assembly mechanism being driven by events such as the formation of small lipid clusters, merging of the lipid clusters in the vicinity of the NP to form NP-embedded vesicle with a pore, and collapsing of that pore to eventually form the equilibrated NPSLBL system overcoming a large free-energy barrier. Subsequently, we quantify the properties and the configurations of this NPSLBL system. We reveal that unlike our proposition of an equal number of lipid molecules occupying the inner and outer leaflets in a recent report studying the properties of a preassembled lipid bilayer, the equilibrated self-assembled NPSLBL system demonstrates a much larger number of lipid molecules occupying the outer leaflet as compared to the inner leaflet. Second, the thickness of the water layer entrapped between the NP and the inner leaflet shows similar values as predicted by experiments and our previous study. Finally, we reveal that, similar to our previous study, the diffusivity of the lipid molecules in the outer leaflet is larger than that in the inner leaflet but, due to higher temperature employed during our simulations, are even larger than that predicted by our previous study.
Collapse
Affiliation(s)
- Haoyuan Jing
- Department of Mechanical Engineering, University of Maryland, 4298 Campus Drive, College Park, MD 20742
| | - Yanbin Wang
- Department of Mechanical Engineering, University of Maryland, 4298 Campus Drive, College Park, MD 20742
| | - Parth Rakesh Desai
- Department of Mechanical Engineering, University of Maryland, 4298 Campus Drive, College Park, MD 20742
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, 4298 Campus Drive, College Park, MD 20742
| |
Collapse
|
28
|
Nepal B, Sepehri A, Lazaridis T. Mechanisms of negative membrane curvature sensing and generation by ESCRT III subunit Snf7. Protein Sci 2020; 29:1473-1485. [PMID: 32142182 DOI: 10.1002/pro.3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Certain proteins have the propensity to bind to negatively curved membranes and generate negative membrane curvature. The mechanism of action of these proteins is much less studied and understood than those that sense and generate positive curvature. In this work, we use implicit membrane modeling to explore the mechanism of an important negative curvature sensing and generating protein: the main ESCRT III subunit Snf7. We find that Snf7 monomers alone can sense negative curvature and that curvature sensitivity increases for dimers and trimers. We have observed spontaneous bending of Snf7 oligomers into circular structures with preferred radius of ~20 nm. The preferred curvature of Snf7 filaments is further confirmed by the simulations of preformed spirals on a cylindrical membrane surface. Snf7 filaments cannot bind with the same interface to flat and curved membranes. We find that even when a filament has the preferred radius, it is always less stable on the flat membrane surface than on the interior cylindrical membrane surface. This provides an additional energy for membrane bending which has not been considered in the spiral spring model. Furthermore, the rings on the cylindrical spirals are bridged together by helix 4 and hence are extra stabilized compared to the spirals on the flat membrane surface.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Aliasghar Sepehri
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York, USA.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
29
|
A 2-dimensional ratchet model describes assembly initiation of a specialized bacterial cell surface. Proc Natl Acad Sci U S A 2019; 116:21789-21799. [PMID: 31597735 DOI: 10.1073/pnas.1907397116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacterial spores are dormant cells that are encased in a thick protein shell, the "coat," which participates in protecting the organism's DNA from environmental insults. The coat is composed of dozens of proteins that assemble in an orchestrated fashion during sporulation. In Bacillus subtilis, 2 proteins initiate coat assembly: SpoVM, which preferentially binds to micron-scale convex membranes and marks the surface of the developing spore as the site for coat assembly; and SpoIVA, a structural protein recruited by SpoVM that uses ATP hydrolysis to drive its irreversible polymerization around the developing spore. Here, we describe the initiation of coat assembly by SpoVM and SpoIVA. Using single-molecule fluorescence microscopy in vivo in sporulating cells and in vitro on synthetic spores, we report that SpoVM's localization is primarily driven by a lower off-rate on membranes of preferred curvature in the absence of other coat proteins. Recruitment and polymerization of SpoIVA results in the entrapment of SpoVM on the forespore surface. Using experimentally derived reaction parameters, we show that a 2-dimensional ratchet model can describe the interdependent localization dynamics of SpoVM and SpoIVA, wherein SpoVM displays a longer residence time on the forespore surface, which favors recruitment of SpoIVA to that location. Localized SpoIVA polymerization in turn prevents further sampling of other membranes by prelocalized SpoVM molecules. Our model therefore describes the dynamics of structural proteins as they localize and assemble at the correct place and time within a cell to form a supramolecular complex.
Collapse
|
30
|
Karauzum H, Updegrove TB, Kong M, Wu IL, Datta SK, Ramamurthi KS. Vaccine display on artificial bacterial spores enhances protective efficacy against Staphylococcus aureus infection. FEMS Microbiol Lett 2019; 365:5061626. [PMID: 30084923 DOI: 10.1093/femsle/fny190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Spores of Bacillus subtilis are encased in a protein coat composed of ∼80 different proteins. Recently, we reconstituted the basement layer of the coat, composed of two structural proteins (SpoVM and SpoIVA) around spore-sized silica beads encased in a lipid bilayer, to create synthetic spore-like particles termed 'SSHELs'. We demonstrated that SSHELs could display thousands of copies of proteins and small molecules of interest covalently linked to SpoIVA. In this study, we investigated the efficacy of SSHELs in delivering vaccines. We show that intramuscular vaccination of mice with undecorated one micron-diameter SSHELs elicited an antibody response against SpoIVA. We further demonstrate that SSHELs covalently modified with a catalytically inactivated staphylococcal alpha toxin variant (HlaH35L), without an adjuvant, resulted in improved protection against Staphylococcus aureus infection in a bacteremia model as compared to vaccination with the antigen alone. Although vaccination with either HlaH35L or HlaH35L conjugated to SSHELs similarly elicited the production of neutralizing antibodies to Hla, we found that a subset of memory T cells was differentially activated when the antigen was delivered on SSHELs. We propose that the particulate nature of SSHELs elicits a more robust immune response to the vaccine that results in superior protection against subsequent S. aureus infection.
Collapse
Affiliation(s)
- Hatice Karauzum
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Minsuk Kong
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - I-Lin Wu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Sandip K Datta
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
|
32
|
Cannon KS, Woods BL, Crutchley JM, Gladfelter AS. An amphipathic helix enables septins to sense micrometer-scale membrane curvature. J Cell Biol 2019; 218:1128-1137. [PMID: 30659102 PMCID: PMC6446858 DOI: 10.1083/jcb.201807211] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/17/2018] [Accepted: 01/07/2019] [Indexed: 02/04/2023] Open
Abstract
Cell shape is well described by membrane curvature. Septins are filament-forming, GTP-binding proteins that assemble on positive, micrometer-scale curvatures. Here, we examine the molecular basis of curvature sensing by septins. We show that differences in affinity and the number of binding sites drive curvature-specific adsorption of septins. Moreover, we find septin assembly onto curved membranes is cooperative and show that geometry influences higher-order arrangement of septin filaments. Although septins must form polymers to stay associated with membranes, septin filaments do not have to span micrometers in length to sense curvature, as we find that single-septin complexes have curvature-dependent association rates. We trace this ability to an amphipathic helix (AH) located on the C-terminus of Cdc12. The AH domain is necessary and sufficient for curvature sensing both in vitro and in vivo. These data show that curvature sensing by septins operates at much smaller length scales than the micrometer curvatures being detected.
Collapse
Affiliation(s)
- Kevin S Cannon
- Department of Biology, University of North Carolina at Chapel Hill, NC
| | - Benjamin L Woods
- Department of Biology, University of North Carolina at Chapel Hill, NC
| | - John M Crutchley
- Department of Biology, University of North Carolina at Chapel Hill, NC
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, NC
- Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
33
|
Jing H, Wang Y, Desai PR, Ramamurthi KS, Das S. Nanovesicles Versus Nanoparticle-Supported Lipid Bilayers: Massive Differences in Bilayer Structures and in Diffusivities of Lipid Molecules and Nanoconfined Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2702-2708. [PMID: 30685976 PMCID: PMC7464572 DOI: 10.1021/acs.langmuir.8b03805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We carry out molecular dynamics (MD) simulations to compare the equilibrium architecture and properties of nanoparticle-supported lipid bilayers (NPSLBLs) with the free vesicles of similar dimensions. Three key differences emerge. First, we witness that for a free vesicle, a much larger number of lipid molecules occupy the outer layer as compared to the inner layer; on the other hand, for the NPSLBL the number of lipid molecules occupying the inner and outer layers is identical. Second, we witness that the diffusivities of the lipid molecules occupying both the inner and the outer layers of the free vesicles are identical, whereas for the NPSLBLs the diffusivity of the lipid molecules in the outer layer is more than twice the diffusivity of the lipid molecules in the inner layer. Finally, the NPSLBLs entrap nanoscopic thin water film between the inner lipid layer and the NP and the diffusivity of this water film is nearly 1 order of magnitude smaller than the diffusivity of the bulk water; on the other hand, the water inside the free vesicles has a diffusivity that is only slightly lower than that of the bulk water. Our findings, possibly the first probing the atomistic details of the NPSLBLs, are anticipated to shed light on the properties of this important nanomaterial with applications in a large number of disciplines ranging from drug and gene delivery to characterizing curvature-sensitive molecules.
Collapse
Affiliation(s)
- Haoyuan Jing
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
| | - Yanbin Wang
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
| | - Parth Rakesh Desai
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
| |
Collapse
|