1
|
Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A, Bozdag S, Chen DZ, Cowen L, Devkota K, Gitter A, Gosline SJC, Gu P, Guzzi PH, Huang H, Jiang M, Kesimoglu ZN, Koyuturk M, Ma J, Pico AR, Pržulj N, Przytycka TM, Raphael BJ, Ritz A, Sharan R, Shen Y, Singh M, Slonim DK, Tong H, Yang XH, Yoon BJ, Yu H, Milenković T. Current and future directions in network biology. BIOINFORMATICS ADVANCES 2024; 4:vbae099. [PMID: 39143982 PMCID: PMC11321866 DOI: 10.1093/bioadv/vbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Summary Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation Not applicable.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Aydin Wells
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deisy Morselli Gysi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Statistics, Federal University of Paraná, Curitiba, Paraná 81530-015, Brazil
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Wisconsin Institute for Discovery, Madison, WI 53715, United States
| | - Anaïs Baudot
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- Department of Mathematics, University of North Texas, Denton, TX 76203, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Kapil Devkota
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Morgridge Institute for Research, Madison, WI 53715, United States
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, United States
| | - Pengfei Gu
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Heng Huang
- Department of Computer Science, University of Maryland College Park, College Park, MD 20742, United States
| | - Meng Jiang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziynet Nesibe Kesimoglu
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, England
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Hanghang Tong
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Xinan Holly Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, United States
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
2
|
Nourbakhsh M, Degn K, Saksager A, Tiberti M, Papaleo E. Prediction of cancer driver genes and mutations: the potential of integrative computational frameworks. Brief Bioinform 2024; 25:bbad519. [PMID: 38261338 PMCID: PMC10805075 DOI: 10.1093/bib/bbad519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The vast amount of available sequencing data allows the scientific community to explore different genetic alterations that may drive cancer or favor cancer progression. Software developers have proposed a myriad of predictive tools, allowing researchers and clinicians to compare and prioritize driver genes and mutations and their relative pathogenicity. However, there is little consensus on the computational approach or a golden standard for comparison. Hence, benchmarking the different tools depends highly on the input data, indicating that overfitting is still a massive problem. One of the solutions is to limit the scope and usage of specific tools. However, such limitations force researchers to walk on a tightrope between creating and using high-quality tools for a specific purpose and describing the complex alterations driving cancer. While the knowledge of cancer development increases daily, many bioinformatic pipelines rely on single nucleotide variants or alterations in a vacuum without accounting for cellular compartments, mutational burden or disease progression. Even within bioinformatics and computational cancer biology, the research fields work in silos, risking overlooking potential synergies or breakthroughs. Here, we provide an overview of databases and datasets for building or testing predictive cancer driver tools. Furthermore, we introduce predictive tools for driver genes, driver mutations, and the impact of these based on structural analysis. Additionally, we suggest and recommend directions in the field to avoid silo-research, moving towards integrative frameworks.
Collapse
Affiliation(s)
- Mona Nourbakhsh
- Cancer Systems Biology, Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Astrid Saksager
- Cancer Systems Biology, Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Systems Biology, Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
King SB, Singh M. Primate protein-ligand interfaces exhibit significant conservation and unveil human-specific evolutionary drivers. PLoS Comput Biol 2023; 19:e1010966. [PMID: 36952575 PMCID: PMC10035887 DOI: 10.1371/journal.pcbi.1010966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
Despite the vast phenotypic differences observed across primates, their protein products are largely similar to each other at the sequence level. We hypothesized that, since proteins accomplish all their functions via interactions with other molecules, alterations in the sites that participate in these interactions may be of critical importance. To uncover the extent to which these sites evolve across primates, we built a structurally-derived dataset of ~4,200 one-to-one orthologous sequence groups across 18 primate species, consisting of ~68,000 ligand-binding sites that interact with DNA, RNA, small molecules, ions, or peptides. Using this dataset, we identify functionally important patterns of conservation and variation within the amino acid residues that facilitate protein-ligand interactions across the primate phylogeny. We uncover that interaction sites are significantly more conserved than other sites, and that sites binding DNA and RNA further exhibit the lowest levels of variation. We also show that the subset of ligand-binding sites that do vary are enriched in components of gene regulatory pathways and uncover several instances of human-specific ligand-binding site changes within transcription factors. Altogether, our results suggest that ligand-binding sites have experienced selective pressure in primates and propose that variation in these sites may have an outsized effect on phenotypic variation in primates through pleiotropic effects on gene regulation.
Collapse
Affiliation(s)
- Sean B. King
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
7
|
Etzion-Fuchs A, Todd DA, Singh M. dSPRINT: predicting DNA, RNA, ion, peptide and small molecule interaction sites within protein domains. Nucleic Acids Res 2021; 49:e78. [PMID: 33999210 PMCID: PMC8287948 DOI: 10.1093/nar/gkab356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
Domains are instrumental in facilitating protein interactions with DNA, RNA, small molecules, ions and peptides. Identifying ligand-binding domains within sequences is a critical step in protein function annotation, and the ligand-binding properties of proteins are frequently analyzed based upon whether they contain one of these domains. To date, however, knowledge of whether and how protein domains interact with ligands has been limited to domains that have been observed in co-crystal structures; this leaves approximately two-thirds of human protein domain families uncharacterized with respect to whether and how they bind DNA, RNA, small molecules, ions and peptides. To fill this gap, we introduce dSPRINT, a novel ensemble machine learning method for predicting whether a domain binds DNA, RNA, small molecules, ions or peptides, along with the positions within it that participate in these types of interactions. In stringent cross-validation testing, we demonstrate that dSPRINT has an excellent performance in uncovering ligand-binding positions and domains. We also apply dSPRINT to newly characterize the molecular functions of domains of unknown function. dSPRINT's predictions can be transferred from domains to sequences, enabling predictions about the ligand-binding properties of 95% of human genes. The dSPRINT framework and its predictions for 6503 human protein domains are freely available at http://protdomain.princeton.edu/dsprint.
Collapse
Affiliation(s)
- Anat Etzion-Fuchs
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Princeton, NJ 08544, USA
| | - David A Todd
- Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08544, USA
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Princeton, NJ 08544, USA.,Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08544, USA
| |
Collapse
|