1
|
Buscajoni L, Martinetz MC, Berkemeyer M, Brocard C. Refolding in the modern biopharmaceutical industry. Biotechnol Adv 2022; 61:108050. [PMID: 36252795 DOI: 10.1016/j.biotechadv.2022.108050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
Inclusion bodies (IBs) often emerge upon overexpression of recombinant proteins in E. coli. From IBs, refolding is necessary to generate the native protein that can be further purified to obtain pure and active biologicals. This work focusses on refolding as a significant process step during biopharmaceutical manufacturing with an industrial perspective. A theoretical and historical background on protein refolding gives the reader a starting point for further insights into industrial process development. Quality requirements on IBs as starting material for refolding are discussed and further economic and ecological aspects are considered with regards to buffer systems and refolding conditions. A process development roadmap shows the development of a refolding process starting from first exploratory screening rounds to scale-up and implementation in manufacturing plant. Different aspects, with a direct influence on yield, such as the selection of chemicals including pH, ionic strength, additives, etc., and other often neglected aspects, important during scale-up, such as mixing, and gas-fluid interaction, are highlighted with the use of a quality by design (QbD) approach. The benefits of simulation sciences (process simulation and computer fluid dynamics) and process analytical technology (PAT) for seamless process development are emphasized. The work concludes with an outlook on future applications of refolding and highlights open research inquiries.
Collapse
Affiliation(s)
- Luisa Buscajoni
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Michael C Martinetz
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Matthias Berkemeyer
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Cécile Brocard
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| |
Collapse
|
2
|
Gerstweiler L, Bi J, Middelberg AP. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Rathore AS, Kateja N, Kumar D. Process integration and control in continuous bioprocessing. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
|
5
|
Ghaeidamini M, Kharat AN, Haertlé T, Ahmad F, Saboury AA. β-Cyclodextrin-Modified Magnetic Nanoparticles Immobilized on Sepharose Surface Provide an Effective Matrix for Protein Refolding. J Phys Chem B 2018; 122:9907-9919. [PMID: 30299940 DOI: 10.1021/acs.jpcb.8b07226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we propose an impressive and facile strategy to improve protein refolding using solid phase artificial molecular chaperones consisting of the surface-functionalized magnetic nanoparticles. Specifically, monotosyl-β-cyclodextrin connected to the surface of 3-aminopropyltriethoxysilane (APES)-modified magnetic nanoparticles is immobilized on the sepharose surface to promote interaction with exposed hydrophobic surfaces of partially folded (intermediates) and unfolded states of proteins. Their efficiencies were investigated by circular dichroism spectroscopy and photoluminescence spectroscopy of the protein. Although the mechanism of this method is based on principles of hydrophobic chromatography, this system is not only purging the native protein from inactive inclusion bodies but also improving the protein refolding process. We chose β-cyclodextrin (β-CD) considering multiple reports in the literature about its efficiency in protein refolding and its biocompatibility. To increase the surface area/volume ratio of the sepharose surface by nanoparticles, more β-CD molecules are connected to the sepharose surface to make a better interaction with proteins. We suppose that proteins are isolated in the nanospace created by bound cyclodextrins on the resin surface so intermolecular interactions are reduced. The architecture of nanoparticles was characterized by Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy images, energy dispersive X-ray spectroscopy, nuclear magnetic resonance (1H NMR and 13C NMR), and dynamic light scattering.
Collapse
Affiliation(s)
- Marziyeh Ghaeidamini
- School of Chemistry, University Collage of Science , University of Tehran , Tehran , Iran
| | - Ali N Kharat
- School of Chemistry, University Collage of Science , University of Tehran , Tehran , Iran
| | - Thomas Haertlé
- Department of Animal Nutrition , Poznan University of Life Sciences , 60-637 Poznan , Poland.,Biopolymers, Interactions, Assemblies, UR 1268 , Institut National de la Recherche Agronomique , 44000 Nantes , France.,Institute of Biochemistry and Biophysics , University of Tehran , Tehran , Iran
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi 110025 , India
| | - Ali A Saboury
- Institute of Biochemistry and Biophysics , University of Tehran , Tehran , Iran
| |
Collapse
|
6
|
The role of laboratory-scale bioreactors at the semi-continuous and continuous microbiological and biotechnological processes. Appl Microbiol Biotechnol 2018; 102:7293-7308. [DOI: 10.1007/s00253-018-9194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
|
7
|
Kateja N, Agarwal H, Hebbi V, Rathore AS. Integrated continuous processing of proteins expressed as inclusion bodies: GCSF as a case study. Biotechnol Prog 2017; 33:998-1009. [DOI: 10.1002/btpr.2413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Nikhil Kateja
- Dept. of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Harshit Agarwal
- Dept. of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Vishwanath Hebbi
- Dept. of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| | - Anurag S. Rathore
- Dept. of Chemical Engineering; Indian Institute of Technology Delhi; New Delhi India
| |
Collapse
|
8
|
Zelger M, Pan S, Jungbauer A, Hahn R. Real-time monitoring of protein precipitation in a tubular reactor for continuous bioprocessing. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Eggenreich B, Willim M, Wurm DJ, Herwig C, Spadiut O. Production strategies for active heme-containing peroxidases from E. coli inclusion bodies - a review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2016; 10:75-83. [PMID: 28352527 PMCID: PMC5040872 DOI: 10.1016/j.btre.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 01/28/2023]
Abstract
Heme-containing peroxidases are frequently used in medical applications. However, these enzymes are still extracted from their native source, which leads to inadequate yields and a mixture of isoenzymes differing in glycosylation which limits subsequent enzyme applications. Thus, recombinant production of these enzymes in Escherichia coli is a reasonable alternative. Even though production yields are high, the product is frequently found as protein aggregates called inclusion bodies (IBs). These IBs have to be solubilized and laboriously refolded to obtain active enzyme. Unfortunately, refolding yields are still very low making the recombinant production of these enzymes in E. coli not competitive. Motivated by the high importance of that enzyme class, this review aims at providing a comprehensive summary of state-of-the-art strategies to obtain active peroxidases from IBs. Additionally, various refolding techniques, which have not yet been used for this enzyme class, are discussed to show alternative and potentially more efficient ways to obtain active peroxidases from E. coli.
Collapse
Affiliation(s)
- Britta Eggenreich
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Melissa Willim
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - David Johannes Wurm
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
10
|
Sharma AK, Agarwal H, Pathak M, Nigam KD, Rathore AS. Continuous refolding of a biotech therapeutic in a novel Coiled Flow Inverter Reactor. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2015.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Oxidative protein refolding on size exclusion chromatography: From batch single-column to multi-column counter-current continuous processing. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Engineering batch and pulse refolding with transition of aggregation kinetics: An investigation using green fluorescent protein (GFP). Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zakharova GS, Poloznikov AA, Chubar TA, Gazaryan IG, Tishkov VI. High-yield reactivation of anionic tobacco peroxidase overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:85-93. [PMID: 25986322 DOI: 10.1016/j.pep.2015.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Anionic tobacco peroxidase (TOP) is extremely active in chemiluminescence reaction of luminol oxidation without addition of enhancers and more stable than horseradish peroxidase under antibody conjugation conditions. In addition, recombinant TOP (rTOP) produced in Escherichia coli is known to be a perfect direct electron transfer catalyst on electrodes of various origin. These features make the task of development of a high-yield reactivation protocol for rTOP practically important. Previous attempts to reactivate the enzyme from E. coli inclusion bodies were successful, but the reported reactivation yield was only 14%. In this work, we thoroughly screened the refolding conditions for dilution protocol and compared it with gel-filtration chromatography. The impressive reactivation yield in the dilution protocol (85%) was achieved for 8 μg/mL solubilized rTOP protein and the refolding medium containing 0.3 mM oxidized glutathione, 0.05 mM dithiothreitol, 5 mM CaCl2, 5% glycerol in 50 mM Tris-HCl buffer, pH 9.6, with 1 μM hemin added at the 24th hour of incubation. A practically important discovery was a 30-40% increase in the reactivation yield upon delayed addition of hemin. The reactivation yield achieved is one of the highest reported in the literature on protein refolding by dilution. The final yield of purified active non-glycosylated rTOP was ca. 60 mg per L of E. coli culture, close to the yield reported before for tomato and tobacco plants overexpressing glycosylated TOP (60 mg/kg biomass) and much higher than for the previously reported refolding protocol (2.6 mg per L of E. coli culture).
Collapse
Affiliation(s)
- G S Zakharova
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia.
| | - A A Poloznikov
- Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - T A Chubar
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - I G Gazaryan
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - V I Tishkov
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| |
Collapse
|
14
|
Hekmat D. Large-scale crystallization of proteins for purification and formulation. Bioprocess Biosyst Eng 2015; 38:1209-31. [PMID: 25700885 DOI: 10.1007/s00449-015-1374-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Since about 170 years, salts were used to create supersaturated solutions and crystallize proteins. The dehydrating effect of salts as well as their kosmotropic or chaotropic character was revealed. Even the suitability of organic solvents for crystallization was already recognized. Interestingly, what was performed during the early times is still practiced today. A lot of effort was put into understanding the underlying physico-chemical interaction mechanisms leading to protein crystallization. However, it was understood that already the solvation of proteins is a highly complex process not to mention the intricate interrelation of electrostatic and hydrophobic interactions taking place. Although many basic questions are still unanswered, preparative protein crystallization was attempted as illustrated in the presented case studies. Due to the highly variable nature of crystallization, individual design of the crystallization process is needed in every single case. It was shown that preparative crystallization from impure protein solutions as a capture step is possible after applying adequate pre-treatment procedures like precipitation or extraction. Protein crystallization can replace one or more chromatography steps. It was further shown that crystallization can serve as an attractive alternative means for formulation of therapeutic proteins. Crystalline proteins can offer enhanced purity and enable highly concentrated doses of the active ingredient. Easy scalability of the proposed protein crystallization processes was shown using the maximum local energy dissipation as a suitable scale-up criterion. Molecular modeling and target-oriented protein engineering may allow protein crystallization to become part of a platform purification process in the near future.
Collapse
Affiliation(s)
- Dariusch Hekmat
- Institute of Biochemical Engineering, Technische Universität München, Boltzmannstr. 15, 85748, Garching, Germany,
| |
Collapse
|
15
|
Rathore AS, Agarwal H, Sharma AK, Pathak M, Muthukumar S. Continuous Processing for Production of Biopharmaceuticals. Prep Biochem Biotechnol 2015; 45:836-49. [DOI: 10.1080/10826068.2014.985834] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Saremirad P, Wood JA, Zhang Y, Ray AK. Oxidative protein refolding on size exclusion chromatography at high loading concentrations: Fundamental studies and mathematical modeling. J Chromatogr A 2014; 1370:147-55. [DOI: 10.1016/j.chroma.2014.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|