1
|
Dang CC, Xie GJ, Liu BF, Xing DF, Ding J, Ren NQ. Heavy metal reduction coupled to methane oxidation:Mechanisms, recent advances and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124076. [PMID: 33268204 DOI: 10.1016/j.jhazmat.2020.124076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/08/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Methane emission has contributed greatly to the global warming and climate change, and the pollution of heavy metals is an important concern due to their toxicity and environmental persistence. Recently, multiple heavy metals have been demonstrated to be electron acceptors for methane oxidation, which offers a potential for simultaneous methane emission mitigation and heavy metal detoxification. This review provides a comprehensive discussion of heavy metals reduction coupled to methane oxidation, and identifies knowledge gaps and opportunities for future research. The functional microorganisms and possible mechanisms are detailed in groups under aerobic, hypoxic and anaerobic conditions. The potential application and major environmental significances for global methane mitigation, the elements cycle and heavy metals detoxification are also discussed. The future research opportunities are also discussed to provide insights for further research and efficient practical application.
Collapse
Affiliation(s)
- Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Simulation of composition and mass transfer behaviour of a membrane biofilm reactor using a two dimensional multi-species counter-diffusion model. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
He Z, Zhu Y, Xu X, Wei Z, Wang Y, Zhang D, Pan X. Complex effects of pH and organic shocks on arsenic oxidation and removal by manganese-oxidizing aerobic granular sludge in sequencing batch reactors. CHEMOSPHERE 2020; 260:127621. [PMID: 32688320 DOI: 10.1016/j.chemosphere.2020.127621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Biological technologies are efficient and economical methods for removing toxic arsenic (As) from organic wastewaters. In this study, four sequencing batch reactors of manganese-oxidizing aerobic granular sludge (Mn-AGS) were operated in duplicate and imposed with acidic pH and high organic shocks. Batch experiments with different initial conditions were conducted to investigate the effects of pH and organic load on As(III) oxidation and removal. The results indicate that acidic pH shocks (influent pH decreased to 4.0/3.0) unexpectedly increased the As removal efficiency from 23.4-38.2% to 64.7-72.5%. The effects of high organic shocks were very complicated, as the results of the shocks were opposite twice. According to the results of the batch experiments, it was estimated that the suitable pH range for high performance was 5.0-8.5 in reaction liquid. Although acidic pH shocks initially inhibited As(III) oxidation and removal, they largely extended the reaction time of the suitable pH range and finally improved the As removal efficiency. There were many negative and positive factors affecting the As removal during the high organic shocks, leading to the unstable responses. Moreover, the microbial community was not largely changed by pH or organic shocks, and genus Hydrogenophaga (∼8%) might be responsible for the microbial As(III) oxidation. Finally, several operation strategies were proposed to obtain high performance, such as liquid pH control and aeration improvement.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xuyang Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
4
|
Wang Z, Chen XM, Ni BJ, Tang YN, Zhao HP. Model-based assessment of chromate reduction and nitrate effect in a methane-based membrane biofilm reactor. WATER RESEARCH X 2019; 5:100037. [PMID: 31709419 PMCID: PMC6831904 DOI: 10.1016/j.wroa.2019.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Chromate contamination can pose a high risk to both the environment and public health. Previous studies have shown that CH4-based membrane biofilm reactor (MBfR) is a promising method for chromate removal. In this study, we developed a multispecies biofilm model to study chromate reduction and its interaction with nitrate reduction in a CH4-based MBfR. The model-simulated results were consistent with the experimental data reported in the literature. The model showed that the presence of nitrate in the influent promoted the growth of heterotrophs, while suppressing methanotrophs and chromate reducers. Moreover, it indicated that a biofilm thickness of 150 μm and an influent dissolved oxygen concentration of 0.5 mg O2/L could improve the reactor performance by increasing the chromate removal efficiency under the simulated conditions.
Collapse
Affiliation(s)
- Zhen Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Chen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - Bing-Jie Ni
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - You-Neng Tang
- FAMU-FSU College of Engineering, Florida State University, Tallahassee, USA
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Chen Z, Song X, Zhang S, Wu B, Zhang G, Pan B. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction. WATER RESEARCH 2017; 124:331-340. [PMID: 28779618 DOI: 10.1016/j.watres.2017.07.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
The redox conversion of arsenite and nitrate has direct effects on their potential environment risks. Due to the similar reduction potentials, there are few technologies that can simultaneously oxidize arsenite and reduce nitrate in one process. Here, we demonstrate that a diketone-mediated photochemical process could efficiently do this. A combined experimental and theoretical investigation was conducted to elucidate the mechanisms behind the redox conversion in the UV/acetylacetone (AA) process. Our key finding is that UV irradiation significantly changed the redox potential of AA. The excited AA, 3(AA)*, acted as a semiquinone radical-like electron shuttle. For arsenite oxidation, the efficiency of 3(AA)* was 1-2 orders of magnitude higher than those of quinone-type electron shuttles, whereas the consumption of AA was 2-4 orders of magnitude less than those of benzonquinones. The oxidation of arsenite and reduction of nitrate could be both accelerated when they existed together in UV/AA process. The results indicate that small diketones are some neglected but potent electron shuttles of great application potential in regulating aquatic redox reactions with the combination of UV irradiation.
Collapse
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiaojie Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|