1
|
Yao P, Mohd Esah E, Zhao C. Regulatory mechanisms and applications of Lactobacillus biofilms in the food industry. Front Microbiol 2025; 15:1465373. [PMID: 39845052 PMCID: PMC11753222 DOI: 10.3389/fmicb.2024.1465373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Lactobacillus is widely recognized for its probiotic benefits and has been widely used in food production. While biofilms are typically associated with pathogenic bacteria, they also served as a self-protective mechanism formed by microorganisms in an adverse environments. In recent years, relevant studies have revealed the excellent characteristics of Lactobacillus biofilms, offering new insights into their potential applications in the food industry. The Lactobacillus biofilms is important in improving fermentation processes and enhancing the resilience of Lactobacillus in various conditions. This paper reviews how quorum sensing regulates the formation of Lactobacillus biofilms and explores their roles in stress resistance, bacteriostasis and food production. Additionally, it highlights the emerging concept of fourth-generation probiotics, developed through biofilm technology, as a novel approach to probiotic applications.
Collapse
Affiliation(s)
- Peilin Yao
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China
| | - Effarizah Mohd Esah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Chuanping Zhao
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China
| |
Collapse
|
2
|
Modeling fixed bed bioreactors for isopropanol and butanol production using Clostridium beijerinckii DSM 6423 immobilized on polyurethane foams. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Capilla M, San-Valero P, Izquierdo M, Penya-roja J, Gabaldón C. The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum DSM 792. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Li H, Wang H, Darwesh OM, Du J, Liu S, Li C, Fang J. Separation of biobutanol from ABE fermentation broth using lignin as adsorbent: A totally sustainable approach with effective utilization of lignocellulose. Int J Biol Macromol 2021; 174:11-21. [PMID: 33465363 DOI: 10.1016/j.ijbiomac.2021.01.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Adsorption is considered to be a promising butanol recovery method for solving the issue of inhibition in the ABE (acetone-butanol-ethanol) fermentation. As a byproduct in the second generation biobutanol industry, lignin was found to be a good adsorbent for the butanol enrichment. It is conducive to the full utilization of renewable lignocellulose biomass resource. Kinetic and equilibrium experiments indicated that lignin had a satisfactory adsorption rate and capacity that are comparable to those of many synthetic materials. Multicomponent adsorption experiments revealed that lignin had higher adsorption selectivity toward butanol than that of ethanol and acetone. The adsorption capacity of lignin for butanol first increased and then gradually decreased with increasing temperature. And maximum adsorption capacity reached 304.66 mg g-1 at 313 K. The inflection point of temperature is close to the ABE fermentation temperature of 310 K. The condensed butanol by desorption was 145 g L-1, with a satisfying regeneration performance. 1H NMR and FT-IR spectra indicated that the aromatic units of lignin formed π-systems with A/B/E. The π-system is particularly significant for butanol due to its longer hydrocarbon chain. These results could contribute to the emerging lignin-based materials for butanol separation.
Collapse
Affiliation(s)
- Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Haoyang Wang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Osama M Darwesh
- Agricultural Microbiology Department, Agricultural and Biological Research Division, National Research Centre, Cairo, Egypt
| | - Jingjing Du
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Shan Liu
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China.
| |
Collapse
|
5
|
Cell Factories for Industrial Production Processes: Current Issues and Emerging Solutions. Processes (Basel) 2020. [DOI: 10.3390/pr8070768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite all the progresses made by metabolic engineering, still only a few biotechnological processes are running at an industrial level. In order to boost the biotechnological sector, integration strategies as well as long-term views are needed. The aim of the present review is to identify the main drawbacks in biotechnological processes, and to propose possible solutions to overcome the issues in question. Novel cell factories and bioreactor design are discussed as possible solutions. In particular, the following microorganisms: Yarrowia lipolytica, Trichosporon oleaginosus, Ustilago cynodontis, Debaryomyces hansenii along with sequential bioreactor configurations are presented as possible cell factories and bioreactor design solutions, respectively.
Collapse
|
6
|
|
7
|
Ferone M, Raganati F, Olivieri G, Marzocchella A. Bioreactors for succinic acid production processes. Crit Rev Biotechnol 2019; 39:571-586. [DOI: 10.1080/07388551.2019.1592105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mariateresa Ferone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- UCD School of Agriculture & Food Science, University College Dublin, Dublin, Ireland
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
8
|
Procentese A, Raganati F, Olivieri G, Russo ME, De La Feld M, Marzocchella A. Agro Food Wastes and Innovative Pretreatments to Meet Biofuel Demand in Europe. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alessandra Procentese
- Consiglio Nazionale delle RicercheIstituto di Ricerche sulla Combustione P. le V. Tecchio 80 80125 Napoli Italy
- ENCO S.r.l. Engineering & Consulting Via Michelangelo Schipa 115 80122 Napoli Italy
| | - Francesca Raganati
- Università degli Studi di Napoli Federico IIDipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale P. le V. Tecchio 80 80125 Napoli Italy
| | - Giuseppe Olivieri
- Wageningen UniversityBioprocess Engineering, AlgaePARC P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Maria Elena Russo
- Consiglio Nazionale delle RicercheIstituto di Ricerche sulla Combustione P. le V. Tecchio 80 80125 Napoli Italy
| | - Marco De La Feld
- ENCO S.r.l. Engineering & Consulting Via Michelangelo Schipa 115 80122 Napoli Italy
| | - Antonio Marzocchella
- Università degli Studi di Napoli Federico IIDipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale P. le V. Tecchio 80 80125 Napoli Italy
| |
Collapse
|
9
|
Grisales Díaz VH, von Stosch M, Willis MJ. Butanol production via vacuum fermentation: An economic evaluation of operating strategies. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Giacobbe S, Piscitelli A, Raganati F, Lettera V, Sannia G, Marzocchella A, Pezzella C. Butanol production from laccase-pretreated brewer's spent grain. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:47. [PMID: 30867680 PMCID: PMC6399911 DOI: 10.1186/s13068-019-1383-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Beer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractive for the production of second-generation biofuels as butanol through fermentation processes. RESULTS This study reports the ability of two laccase preparations from Pleurotus ostreatus to delignify and detoxify milled brewer's spent grains (BSG). Up to 94% of phenols reduction was achieved. Moreover, thanks to the mild conditions of enzymatic pretreatment, the formation of other inhibitory compounds was avoided allowing to apply the sequential enzymatic pretreatment and hydrolysis process (no filtration and washing steps between the two phases). As expected, the high detoxification and delignification yields achieved by laccase pretreatment resulted in great saccharification. As a fact, no loss of carbohydrates was observed thanks to the novel sequential strategy, and thus the totality of polysaccharides was hydrolysed into fermentable sugars. The enzymatic hydrolysate was fermented to acetone-butanol-ethanol (ABE) by Clostridium acetobutilycum obtaining about 12.6 g/L ABE and 7.83 g/L butanol within 190 h. CONCLUSIONS The applied sequential pretreatment and hydrolysis process resulted to be very effective for the milled BSG, allowing reduction of inhibitory compounds and lignin content with a consequent efficient saccharification. C. acetobutilycum was able to ferment the BSG hydrolysate with ABE yields similar to those obtained by using synthetic media. The proposed strategy reduces the amount of wastewater and the cost of the overall process. Based on the reported results, the potential production of butanol from the fermentation of BSG hydrolysate can be envisaged.
Collapse
Affiliation(s)
| | - Alessandra Piscitelli
- Biopox srl, Via Salita Arenella 9, Naples, Italy
- Dipartimento di Scienze chimiche, Università degli Studi di Napoli“Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, P.le V. Tecchio 80, 80125 Naples, Italy
| | | | - Giovanni Sannia
- Biopox srl, Via Salita Arenella 9, Naples, Italy
- Dipartimento di Scienze chimiche, Università degli Studi di Napoli“Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Cinzia Pezzella
- Biopox srl, Via Salita Arenella 9, Naples, Italy
- Dipartimento di Scienze chimiche, Università degli Studi di Napoli“Federico II”, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
11
|
Selvaraj S, Vytla RM. Solid state fermentation of Bacillus gottheilii M2S2 in laboratory-scale packed bed reactor for tannase production. Prep Biochem Biotechnol 2018; 48:799-807. [PMID: 30303763 DOI: 10.1080/10826068.2018.1509086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Production of tannase was performed in packed bed reactor filled with an inert support polyurethane foam (PUF) using Bacillus gottheilii M2S2. The influence of process parameters such as fermentation time (24-72 h), tannic acid concentration (0.5-2.5% w/v), inoculum size (7-12% v/v), and aeration rate (0-0.2 L/min) on tannase production with PUF were analyzed using one variable at a time (OVAT) approach. The outcome of OVAT was optimized by central composite design. Based on the statistical investigation, the proposed mathematical model recommends 1% (w/v) of tannic acid, 10% (v/v) of inoculum size and 0.13 L/min of aeration rate for maximum production (76.57 ± 1.25 U/L). The crude enzyme was purified using ammonium sulfate salt precipitation method followed by dialysis. The biochemical properties of partially purified tannase were analyzed and found the optimum pH (4.0), temperature (40 °C) for activity, and Km (1.077 mM) and Vmax (1.11 µM/min) with methyl gallate as a substrate. Based on the SDS-PAGE analysis, tannase exhibited two bands with molecular weights of 57.5 and 42.3 kDa. Briefly, the partially purified tannase showed 4.2 fold increase (63 ± 1.60 U/L) in comparison to the submerged fermentation and the production of tannase was validated by using NMR spectrometer.
Collapse
Affiliation(s)
- Subbalaxmi Selvaraj
- a Department of Biotechnology , Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal , India
| | - Ramachandra Murty Vytla
- a Department of Biotechnology , Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal , India
| |
Collapse
|
12
|
Ferone M, Raganati F, Ercole A, Olivieri G, Salatino P, Marzocchella A. Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed-bed biofilm reactor. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:138. [PMID: 29785205 PMCID: PMC5950251 DOI: 10.1186/s13068-018-1143-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/03/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Succinic acid is one of the most interesting platform chemicals that can be produced in a biorefinery approach. In this study, continuous succinic acid production by Actinobacillus succinogenes fermentation in a packed-bed biofilm reactor (PBBR) was investigated. RESULTS The effects of the operating conditions tested, dilution rate (D), and medium composition (mixture of glucose, xylose, and arabinose-that simulate the composition of a lignocellulosic hydrolysate)-on the PBBR performances were investigated. The maximum succinic acid productivity of 35.0 g L-1 h-1 and the maximum SA concentration were achieved at a D = 1.9 h-1. The effect of HMF and furfural on succinic acid production was also investigated. HMF resulted to reduce succinic acid production by 22.6%, while furfural caused a reduction of 16% in SA production at the same dilution rate. CONCLUSION Succinic acid production by A. succinogenes fermentation in a packed-bed reactor (PBBR) was successfully carried out for more than 5 months. The optimal results were obtained at the dilution rate 0.5 h-1: 43.0 g L-1 of succinic acid were produced, glucose conversion was 88%; and the volumetric productivity was 22 g L-1 h-1.
Collapse
Affiliation(s)
- Mariateresa Ferone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Alessia Ercole
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
- Wageningen University and Research Centre, Droevendaalsesteeg 1, P.O. Box 8129, 6708 PB Wageningen, The Netherlands
| | - Piero Salatino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
13
|
Raganati F, Procentese A, Olivieri G, Russo ME, Salatino P, Marzocchella A. Bio-butanol separation by adsorption on various materials: Assessment of isotherms and effects of other ABE-fermentation compounds. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Procentese A, Raganati F, Olivieri G, Russo ME, Rehmann L, Marzocchella A. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. BIORESOURCE TECHNOLOGY 2017; 243:464-473. [PMID: 28688330 DOI: 10.1016/j.biortech.2017.06.143] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 05/04/2023]
Abstract
Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed.
Collapse
Affiliation(s)
- Alessandra Procentese
- Istituto di Ricerche sulla Combustione - Consiglio Nazionale delle Ricerche, P.le V. Tecchio 80, 80125 Napoli, Italy.
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale - Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale - Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - Maria Elena Russo
- Istituto di Ricerche sulla Combustione - Consiglio Nazionale delle Ricerche, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale - Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|