1
|
de Moura SG, Ramalho TC, de Oliveira LCA, Dauzakier LCL, Magalhães F. Photocatalytic degradation of methylene blue dye by TiO2 supported on magnetic core shell (Si@Fe) surface. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02356-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Synthesis and Performance of Photocatalysts for Photocatalytic Hydrogen Production: Future Perspectives. Catalysts 2021. [DOI: 10.3390/catal11121505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Photocatalysis for “green” hydrogen production is a technology of increasing importance that has been studied using both TiO2–based and heterojunction composite-based semiconductors. Different irradiation sources and reactor units can be considered for the enhancement of photocatalysis. Current approaches also consider the use of electron/hole scavengers, organic species, such as ethanol, that are “available” in agricultural waste, in communities around the world. Alternatively, organic pollutants present in wastewaters can be used as organic scavengers, reducing health and environmental concerns for plants, animals, and humans. Thus, photocatalysis may help reduce the carbon footprint of energy production by generating H2, a friendly energy carrier, and by minimizing water contamination. This review discusses the most up-to-date and important information on photocatalysis for hydrogen production, providing a critical evaluation of: (1) The synthesis and characterization of semiconductor materials; (2) The design of photocatalytic reactors; (3) The reaction engineering of photocatalysis; (4) Photocatalysis energy efficiencies; and (5) The future opportunities for photocatalysis using artificial intelligence. Overall, this review describes the state-of-the-art of TiO2–based and heterojunction composite-based semiconductors that produce H2 from aqueous systems, demonstrating the viability of photocatalysis for “green” hydrogen production.
Collapse
|
3
|
Kubacka A, Barba-Nieto I, Caudillo-Flores U, Fernández-García M. Interpreting quantum efficiency for energy and environmental applications of photo-catalytic materials. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Photocatalytic Conversion of Organic Pollutants in Air: Quantum Yields Using a Silver/Nitrogen/TiO2 Mesoporous Semiconductor under Visible Light. Catalysts 2021. [DOI: 10.3390/catal11050529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This research studies the photocatalytic conversion of methanol (25–90 µmol/L range) as a volatile organic compound (VOC) surrogate into CO2, using a N/Ag/TiO2 photocatalyst under visible light irradiation in a Photo-CREC Air unit. The N/Ag/TiO2 mesh supported photocatalyst is prepared via the solvothermal method. While the bare-TiO2 is inactive under visible light, the N/Ag/TiO2 2 wt.% loaded stainless-steel woven mesh displays 35% quantum yields, with 80% absorbed photons and 60% methanol conversion in a 110 min irradiation period. Results obtained are assigned to silver surface plasmon resonance, silver and nitrogen species synergistic impacts on band gap, and their influence on particle agglomerate size and semiconductor acidity. The determined quantum yields under visible light in a Photo-CREC Air unit, are the highest reported in the technical literature, that these authors are aware of, with this opening unique opportunity for the use of visible light for the purification of air from VOC contaminants.
Collapse
|
5
|
Photocatalysis for Air Treatment Processes: Current Technologies and Future Applications for the Removal of Organic Pollutants and Viruses. Catalysts 2020. [DOI: 10.3390/catal10090966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Photocatalysis for air treatment or photocatalytic oxidation (PCO) is a relatively new technology which requires titanium dioxide (TiO2) and a source of light (Visible or near-UV) to degrade pollutants contained in air streams. Present approaches for the photodegradation of indoor pollutants in air streams aim to eliminate volatile organic compounds (VOCs) and viruses, which are both toxic and harmful to human health. Photocatalysis for air treatment is an inexpensive and innovative green process. Additionally, it is a technology with a reduced environmental footprint when compared to other conventional air treatments which demand significant energy, require the disposal of used materials, and release CO2 and other greenhouse gases to the environment. This review discusses the most current and relevant information on photocatalysis for air treatment. This article also provides a critical review of (1) the most commonly used TiO2-based semiconductors, (2) the experimental syntheses and the various photocatalytic organic species degradation conversions, (3) the developed kinetics and computational fluid dynamics (CFD) and (4) the proposed Quantum Yields (QYs) and Photocatalytic Thermodynamic Efficiency Factors (PTEFs). Furthermore, this article contains important information on significant factors affecting the photocatalytic degradation of organic pollutants, such as reactor designs and type of photoreactor irradiation. Overall, this review describes state-of-the-art photocatalysis for air treatment to eliminate harmful indoor organic molecules, reviewing as well the potential applications for the inactivation of SARS-CoV2 (COVID-19) viruses.
Collapse
|
6
|
Escobedo S, Rusinque B, de Lasa H. Photochemical Thermodynamic Efficiency Factors (PTEFs) for Hydrogen Production Using Different TiO2 Photocatalysts. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Salvador Escobedo
- Faculty of Engineering, Chemical Reactor Engineering Centre (CREC), Western University, London, Ontario N6A 5B9, Canada
| | - Bianca Rusinque
- Faculty of Engineering, Chemical Reactor Engineering Centre (CREC), Western University, London, Ontario N6A 5B9, Canada
| | - Hugo de Lasa
- Faculty of Engineering, Chemical Reactor Engineering Centre (CREC), Western University, London, Ontario N6A 5B9, Canada
| |
Collapse
|
7
|
Photocatalytic Activity of TiO2 Thin Films: Kinetic and Efficiency Study. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2017. [DOI: 10.1515/ijcre-2016-0153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this work was to evaluate the photocatalytic activity of two distinct anatase thin films. Films were prepared following the sol-gel procedure from titanium (IV) isopropoxide (TF-1) and from commercial TiO2 P25 as a starting material (TF-2). The films were compared based on the salicylic acid (2-dihydroxybenzoic acid, 2-HBA) photocatalytic degradation in reactors of different geometry and under different irradiation conditions. Experiments were performed in (i) an annular photoreactors operated under turbulent flow (TAR1 and TAR2) and (ii) semi-annular reactor operated under laminar flow (LFR). The TF-1 and TF-2 were immobilized on the inner side of outer wall of TAR1 and TAR2 and on the bottom of LFR. Experimental study included sorption study and four consecutive photocatalytic runs (tirr= 8 h) using TF-1 and TF-2 in each reactor. Obtained results confirmed the stability and the similar photocatalytic activity of the both films. The 2,5-dihydroxybenzoic acid (2,5-DHBA) and 2,3-dihydroxybenzoic acid (2,3-DHBA) were identified as main 2-HBA degradation by-products. Kinetic models were developed accordingly. Incident photon flux was determined along the inner reactor wall in annular reactors and on the bottom of LFR, i. e. on the thin film surface (I
tf, W m−2) using ESSDE radiation emission model. The irradiation factor, i. e. the product of absorption coefficient and incident photon flux at film surface (μI
tf(z))m was introduced into the kinetic models. Resulting reaction rate constants k
i (min−1W−0.5 m1.5) were independent of reactor geometry, hydrodynamics, irradiation condition and the optical properties of thin films. Efficiencies of TF-1 and TF-2 in studied reactors were given on the basis of quantum yields (QY) for 2-HBA oxidation and overall mineralization toward CO2.
Collapse
|