1
|
Yang CJ, Huang YD, Zhang YY, Pan YZ, Yang J, Pan YM, Gan T, Tang HT, Zhang X, Li WH, Wang D. A Mn-Rh dual single-atom catalyst for inducing C-C cleavage: relay catalysis reversing chemoselectivity in C-H oxidation. Chem Sci 2025; 16:7329-7338. [PMID: 40144497 PMCID: PMC11934264 DOI: 10.1039/d4sc08658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The integration of two entirely unrelated organic reactions into a novel reaction poses a formidable challenge. While diatomic catalysts (DACs) have exhibited promise as a framework for realizing this concept, the fusion of disparate organic reactions using DACs remains exceptionally uncommon. The reason for this is that there are often interactions between the two metal sites in DACs, which create new difficulties in catalyst design for already complex reaction systems. Based on this situation, the incorporation of two completely isolated single-atom catalytic systems into the same reaction is a promising solution. Herein, we synthesized a Mn-Rh dual single-atom catalyst (DSAC, Mn1-Rh1@O-TiC) and this DSAC demonstrates remarkable selectivity and conversion efficiency in the oxidation reaction of cumene, facilitating the highly efficient production of acetophenone (AP) in an almost quantitative form. The two completely isolated metal catalytic centers, Mn and Rh, each playing a distinct role in the reaction, synergistically propel the directed conversion of cumene to AP in a well-defined manner. This investigation not only illustrates a rare instance of dual single-atom catalyst-mediated relay catalysis in organic synthesis but also imparts valuable insights into the systematic design of catalytic systems for organic tandem reactions, approached from the vantage point in the atomic scale.
Collapse
Affiliation(s)
- Chang-Jie Yang
- Department of Chemistry, Northeastern University Shenyang 110819 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Yu-Da Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Yu-Yuan Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Yong-Zhou Pan
- Department of Chemistry, Northeastern University Shenyang 110819 P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 P. R. China
| | - Xia Zhang
- Department of Chemistry, Northeastern University Shenyang 110819 P. R. China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University Shenyang 110819 P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
2
|
Shi G, Dong L, Feng Y. An Investigation of N-Hydroxyphthalimide Catalyzed Aerobic Oxidation of Toluene without Metal Ions in Liquid Phase: Effect of Solvents and Phase Transfer Catalysts. Molecules 2024; 29:3066. [PMID: 38999020 PMCID: PMC11243731 DOI: 10.3390/molecules29133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
The selective oxidation of toluene to yield value-added oxygenates, such as benzyl alcohol, benzaldehyde, and benzoic acid, via dioxygen presents a chlorine-free approach under benign conditions. Metal-free catalytic processes are preferred to avoid metal ion contamination. In this study, we employed N-hydroxyphthalimide (NHPI) as a catalyst for the aerobic oxidation of toluene to its oxygenated derivatives. The choice of solvent exerted a significant impact on the catalytic activity and selectivity of the catalyst NHPI at reaction temperatures exceeding 70 °C. Notably, hexafluoroisopropanol substantially enhanced the selective production of benzaldehyde. Furthermore, we identified didecyl dimethyl ammonium bromide, featuring two symmetrical long hydrophobic chains, as a potent enhancer of NHPI for the solvent-free aerobic oxidation of toluene. This effect is ascribed to its unique symmetrical structure, extraction capabilities, and resistance to thermal and acid/base conditions. Based on the product distribution and control experiments, we proposed a plausible reaction mechanism. These findings may inform the industrial synthesis of oxygenated derivatives from toluene.
Collapse
Affiliation(s)
- Guojun Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Longsheng Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ya Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
3
|
Zhu H, Zhao J, Duan L, Zhao G, Yu Z, Li J, Sun H, Meng Q. Low-Temperature Synthesis of Cyano-Rich Modified Surface-Alkalinized Heterojunctions with Directional Charge Transfer for Photocatalytic In Situ Generation and Consumption of Peroxides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6008-6024. [PMID: 38282284 DOI: 10.1021/acsami.3c18293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The synthesis of low-temperature poly(heptazine imide) (PHI) presents a significant challenge. In this context, we have developed a novel low-temperature synthesis strategy for PHI in this work. This strategy involves the introduction of Na+ ions, which etch and disrupt the conjugated structure of carbon nitride (CN) during assisted thermal condensation. This disruption leads to the partial decomposition of the heptazine ring structure, resulting in the formation of C≡N functionalities on the CN surface, which are enriched with hydroxyl groups and undergo cyano modification. The formation of heterojunctions between CN and ZnO, which facilitate charge transfer along an immobilization pathway, accelerated charge transfer processes and improved reactant adsorption as well as electron utilization efficiency. The resulting catalyst was employed for the room temperature, atmospheric pressure, and solvent-free photocatalytic selective oxidation of cumene (CM), achieving a cumene conversion rate of 28.7% and a remarkable selectivity of 92.0% toward the desired product, cumene hydroperoxide (CHP). Furthermore, this CHP induced oxidative reactions, as demonstrated by the successful oxidation of benzylamine to imine and the oxidation of sulfide to sulfoxide, both yielding high product yields. Additionally, the utilization of a continuous-flow device significantly reduces the reaction time required for these oxidation processes. This work not only introduces an innovative approach to environmentally friendly, sustainable, clean, and efficient PHI synthesis but also underscores the promising potential and advantages of carbon nitride-based photocatalysts in the realm of sustainable and green organic transformations.
Collapse
Affiliation(s)
- Hongfei Zhu
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liyuan Duan
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guofeng Zhao
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianing Li
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huinan Sun
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| |
Collapse
|
4
|
Kitano M, Saitoh T, Nishiyama S, Einaga Y, Yamamoto T. Electro-conversion of cumene into acetophenone using boron-doped diamond electrodes. Beilstein J Org Chem 2022; 18:1154-1158. [PMID: 36128427 PMCID: PMC9475189 DOI: 10.3762/bjoc.18.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
A straightforward electro-conversion of cumene into acetophenone has been reported using boron-doped diamond (BDD) electrodes. This particular conversion is driven by the addition reaction of a cathodically generated hydroperoxide anion to an anodically generated cumyl cation, where the BDD’s wide potential window enables the direct anodic oxidation of cumene into the cumyl cation. Since electricity is directly employed as the oxidizing and reducing reagents, the present protocol is easy to use, suitable for scale-up, and inherently safe.
Collapse
Affiliation(s)
- Mana Kitano
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Shigeru Nishiyama
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
5
|
Oxyfunctionalization of Benzylic C-H Bonds of Toluene Mediated by Covalently Anchored Co-Schiff Bases. Molecules 2022; 27:molecules27165302. [PMID: 36014538 PMCID: PMC9416660 DOI: 10.3390/molecules27165302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Oxyfunctionalization of toluene to value-added benzaldehyde, benzyl alcohol and benzoic acid is of great significance. In this work, Co-Schiff bases were immobilized on commercial silica gel by covalent anchoring, and resulting catalysts were used to catalyze the oxidation of toluene in the presence of the cocatalyst N-hydroxyphthalimide (NHPI). The catalysts exhibited excellent textural and structural properties, reliable bonding and a predomination of the cobaltous ions. The catalyst synthesized by diethylamino salicylaldehyde (EASA) possessed a grafting density of 0.14 mmol/g and exhibited a toluene conversion of 37.5%, with predominant selectivities to benzaldehyde, benzyl alcohol and benzoic acid under solvent-free conditions. It is concluded that the effect of ligands on their catalytic performance might be related to their electron-donating or -withdrawing properties.
Collapse
|
6
|
Su Y, Chen Z, Huang J, Wang H, Yu H, Zhang Q, Cao Y, Peng F. Confined Cobalt on Carbon Nanotubes in Solvent‐free Aerobic Oxidation of Ethylbenzene: Enhanced Interfacial Charge Transfer. ChemCatChem 2021. [DOI: 10.1002/cctc.202101378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongzhao Su
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Zhicheng Chen
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory for New Energy and Green Catalysis Guangzhou University Guangzhou 510006 P. R. China
| | - Jiangnan Huang
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Hongjuan Wang
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Hao Yu
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory for New Energy and Green Catalysis Guangzhou University Guangzhou 510006 P. R. China
| | - Yonghai Cao
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Feng Peng
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory for New Energy and Green Catalysis Guangzhou University Guangzhou 510006 P. R. China
| |
Collapse
|
7
|
Ulitin N, Kharlampidi K, Tereshchenko К, Novikov N, Shiyan D, Nurmurodov T, Nurullina N, Ziyatdinov N, Miroshkin N. The cumene oxidation and cumene hydroperoxide decomposition in the presence of Zn, Cd or Hg 2-ethylhexanoate: Kinetic model and analysis of its sensitivity. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Bai J, Huang J, Jiang Q, Li Y, Wang H, Yu H, Zhang Q, Cao Y, Peng F. Radical Propagation Facilitating Aerobic Oxidation of Substituted Aromatics Promoted by Tert‐Butyl Hydroperoxide. ChemistrySelect 2021. [DOI: 10.1002/slct.202101805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jiatong Bai
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 China
| | - Jiangnan Huang
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 China
| | - Qi Jiang
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 China
| | - Yuhang Li
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongjuan Wang
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 China
| | - Hao Yu
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 China
| | - Qiao Zhang
- Guangzhou Key Laboratory for New Energy and Green Catalysis School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| | - Yonghai Cao
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 China
| | - Feng Peng
- Guangzhou Key Laboratory for New Energy and Green Catalysis School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| |
Collapse
|
9
|
Shen HM, Ye HL, Wang Q, Hu MY, Liu L, She YB. Efficient oxidation of cumene to cumene hydroperoxide with ambient O 2 catalyzed by metalloporphyrins. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel and efficient protocol for oxidation of cumene to cumene hydroperoxide was presented using ambient O2 catalyzed by very simple metalloporphyrins. The selectivity toward cumene hydroperoxide reached 98.3% in the cumene conversion of 28.1% with T(4-COOH)PPCu as a catalyst at 80[Formula: see text]C. The origin of the higher performance of T(4-COOH)PPCu was mainly ascribed to the low catalytic performance of copper(II) in the cumene hydroperoxide decomposition, and the ability of T(4-COOH)PP in stabilizing cumene hydroperoxide through hydrogen-bond interactions between them. Compared with current industrial processes and academic research in oxidation of cumene to cumene hydroperoxide with O2, the main superiorities of this protocol were the high selectivity, high conversion, simple catalysts, solvent-free, additive-free and mild conditions which made this work an appealing reference for the industrial oxidation of cumene to cumene hydroperoxide, as well as the oxidative functionalization of other C-H bonds in various hydrocarbons.
Collapse
Affiliation(s)
- Hai M. Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong L. Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meng Y. Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lei Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan B. She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Su Y, Li Y, Chen Z, Huang J, Wang H, Yu H, Cao Y, Peng F. New Understanding of Selective Aerobic Oxidation of Ethylbenzene Catalyzed by Nitrogen‐doped Carbon Nanotubes. ChemCatChem 2020. [DOI: 10.1002/cctc.202001503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongzhao Su
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Yuhang Li
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory for New Energy and Green Catalysis Guangzhou University Guangzhou 510006 P. R. China
- School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zhicheng Chen
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory for New Energy and Green Catalysis Guangzhou University Guangzhou 510006 P. R. China
| | - Jiangnan Huang
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Hongjuan Wang
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Hao Yu
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Yonghai Cao
- School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou 510640 P. R. China
| | - Feng Peng
- School of Chemistry and Chemical Engineering Guangzhou Key Laboratory for New Energy and Green Catalysis Guangzhou University Guangzhou 510006 P. R. China
| |
Collapse
|
11
|
Chen X, Shen Q, Li Z, Wan W, Chen J, Zhang J. Metal-Free H 2 Activation for Highly Selective Hydrogenation of Nitroaromatics Using Phosphorus-Doped Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:654-666. [PMID: 31808342 DOI: 10.1021/acsami.9b17582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We reported that phosphorus-doped carbon nanotubes (P-CNTs), showing metal-like properties, can efficiently promote metal-free hydrogenation of nitrobenzene (1a) to aniline (2a) using molecular hydrogen (H2) as a reducing reagent under very mild conditions with a reaction temperature of only 50 °C. The kinetics of 1a hydrogenation over P-CNT reveals that the hydrogenation rate of 1a is a first-order dependence on the H2 pressure and the P-CNT loading level, and a zero-order dependence on 1a concentration, demonstrating the rate-determining step of H2 adsorption and activation over P-CNT. The activation energy of P-CNT-catalyzed 1a hydrogenation is 43 ± 3 kJ mol-1 with the turnover frequency around 3.60 ± 0.12 h-1 at 50 °C. In addition to 1a, the general applicability of the P-CNT-promoted metal-free hydrogenation process is further demonstrated by applying various functionalized nitroaromatics with wide industrial interest. The P-CNT shows both excellent yields and selectivities to hydrogenation with respect to reducible, labile, and strong leaving groups on the nitroaromatics molecules. The stability and reusability of the P-CNT demonstrate up to eight-time recycling without evident loss of activity and selectivity. In addition to hydrogenation, metal-free catalytic transfer hydrogenation of 1a is achieved with P-CNT using diverse hydrogen sources, including hydrazine hydrate (N2H4·H2O), carbon monoxide/water (CO/H2O), and formic acid/triethylamine (HCOOH/Et3N).
Collapse
Affiliation(s)
- Xuehua Chen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Qiujuan Shen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Zhijing Li
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Weihao Wan
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| | - Jinzhu Chen
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China
| | - Jiayan Zhang
- Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China
| |
Collapse
|
12
|
Deng J, Li Y, Cao Y, Wang H, Yu H, Zhang Q, Zuo J, Peng F. Trace amounts of Cu(OAc) 2 boost the efficiency of cumene oxidation catalyzed by carbon nanotubes washed with HCl. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02536g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trace amounts of Cu(OAc)2 significantly improve the activity and selectivity of cumene oxidation catalyzed by HCl-washed carbon nanotubes.
Collapse
Affiliation(s)
- Jie Deng
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab of Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- China
| | - Yuhang Li
- Guangzhou Key Laboratory for New Energy and Green Catalysis
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Yonghai Cao
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab of Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- China
| | - Hongjuan Wang
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab of Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- China
| | - Hao Yu
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab of Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- China
| | - Qiao Zhang
- Guangzhou Key Laboratory for New Energy and Green Catalysis
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Jiangliang Zuo
- Guangzhou Key Laboratory for New Energy and Green Catalysis
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Feng Peng
- Guangzhou Key Laboratory for New Energy and Green Catalysis
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| |
Collapse
|
13
|
Yang M, Qiu G, Huang C, Han X, Li Y, Chen B. Selective Oxidation of Cumene to the Equivalent Amount of Dimethylbenzyl Alcohol and Cumene Hydroperoxide. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Man Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guo Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chongpin Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaomeng Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingxia Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biaohua Chen
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
14
|
Huang J, Cao Y, Wen H, Zhang J, Wang H, Yu H, Peng F. Unraveling the intrinsic enhancement of fluorine doping in the dual-doped magnetic carbon adsorbent for the environmental remediation. J Colloid Interface Sci 2019; 538:327-339. [DOI: 10.1016/j.jcis.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/24/2022]
|
15
|
Catalytic properties of microporous zeolites in the catalytic cracking of m-diisopropylbenzene. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Zhang Y, Yang J, Zhong L, Liu L. Effect of multi-wall carbon nanotubes on Cr(VI) reduction by citric acid: Implications for their use in soil remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23791-23798. [PMID: 29876853 DOI: 10.1007/s11356-018-2438-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The potential application of carbon nanotubes (CNTs) in waste water treatment and their effect on the fate of heavy metals in the environments have attracted wide attention. However, the influence of CNTs on the reduction of Cr(VI) to Cr(III) in soils remains unknown. In this study, Cr(VI) adsorption by carboxylated or hydroxylated multi-walled carbon nanotubes (MWCNT-COOH or MWCNT-OH) was investigated together with their catalytic effect on Cr(VI) reduction by citric acid. Across the initial concentration range examined (5-60 mg/L), the adsorption capacity of Cr(VI) by MWCNT-COOH and MWCNT-OH (pH 5.0) could reach to 8.09 and 7.85 mg/g, respectively. With the decrease in pH, the Cr(VI) adsorption by both MWCNTs increased, while their difference in adsorption capacity became more pronounced, evidenced by that the percentage of Cr(VI) adsorbed by MWCNT-COOH can be 1.3-fold higher than that of MWCNT-OH at a pH of 3.2. The Cr(VI) adsorption kinetics could be well described by pseudo-second-order (R2 > 0.95) and intra-particle diffusion models (R2 > 0.98). MWCNT-OH or MWCNT-COOH could accelerate the reduction of 0.1 mM Cr(VI) by 1.0 mM citric acid, with the first-order rate constant of 0.0325 and 0.0147 h-1, respectively. This finding was explained as that the reactivity of citric acid might be enhanced with its adsorption on the MWCNT surfaces. The catalysis of the functionalized CNTs on the Cr(VI) reduction was inhibited as the pH increased. The addition of MWCNTs to an oxisol can enhance the Cr(VI) reduction because the final concentration of aqueous Cr(III), compared with that without addition of MWCNTs, increased from 20.7 to 32.6 μM. Meanwhile, re-adsorption of aqueous Cr(III) onto the solid surfaces was also observed. The results above are important for understanding on the effect of CNTs on the fate of Cr(VI) and how they can be used to remediate Cr(VI)-polluted soils.
Collapse
Affiliation(s)
- Yali Zhang
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510025, People's Republic of China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jiewen Yang
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510025, People's Republic of China.
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Laiyuan Zhong
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Liming Liu
- Department of Land Resources Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|