1
|
Torres M, Hawke E, Hoare R, Scholey R, Pybus LP, Young A, Hayes A, Dickson AJ. Deciphering molecular drivers of lactate metabolic shift in mammalian cell cultures. Metab Eng 2025; 88:25-39. [PMID: 39643154 DOI: 10.1016/j.ymben.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Lactate metabolism plays a critical role in mammalian cell bioprocessing, influencing cellular performance and productivity. The transition from lactate production to consumption, known as lactate metabolic shift, is highly beneficial and has been shown to extend culture lifespan and enhance productivity, yet its molecular drivers remain poorly understood. Here, we have explored the mechanisms that underpin this metabolic shift through two case studies, illustrating environmental- and genetic-driven factors. We characterised these study cases at process, metabolic and transcriptomic levels. Our findings indicate that glutamine depletion coincided with the timing of the lactate metabolic shift, significantly affecting cell growth, productivity and overall metabolism. Transcriptome analysis revealed dynamic regulation the ATF4 pathway, involved in the amino acid (starvation) response, where glutamine depletion activates ATF4 gene and its targets. Manipulating ATF4 expression through overexpression and knockdown experiments showed significant changes in metabolism of glutamine and lactate, impacting cellular performance. Overexpression of ATF4 increased cell growth and glutamine consumption, promoting a lactate metabolic shift. In contrast, ATF4 downregulation decreased cell proliferation and glutamine uptake, leading to production of lactate without any signs of lactate shift. These findings underscore a critical role for ATF4 in regulation of glutamine and lactate metabolism, related to phasic patterns of growth during CHO cell culture. This study offers unique insight into metabolic reprogramming during the lactate metabolic shift and the molecular drivers that determine cell status during culture.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, University of Manchester, Manchester, UK.
| | - Ellie Hawke
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Robyn Hoare
- FUJIFILM Diosynth Biotechnologies, Billingham, TS23 1LH, UK
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Leon P Pybus
- FUJIFILM Diosynth Biotechnologies, Billingham, TS23 1LH, UK
| | - Alison Young
- FUJIFILM Diosynth Biotechnologies, Billingham, TS23 1LH, UK
| | - Andrew Hayes
- Genomic Technologies Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK; Department of Chemical Engineering, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Enhanced recombinant protein production in CHO cell continuous cultures under growth-inhibiting conditions is associated with an arrested cell cycle in G1/G0 phase. PLoS One 2022; 17:e0277620. [PMCID: PMC9662745 DOI: 10.1371/journal.pone.0277620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Low temperature and sodium butyrate (NaBu) are two of the most used productivity-enhancing strategies in CHO cell cultures during biopharmaceutical manufacturing. While these two approaches alter the balance in the reciprocal relationship between cell growth and productivity, we do not fully understand their mechanisms of action beyond a gross cell growth inhibition. Here, we used continuous culture to evaluate the differential effect of low temperature and NaBu supplementation on CHO cell performance and gene expression profile. We found that an increase in cell-productivity under growth-inhibiting conditions was associated with the arrest of cells in the G1/G0 phase. A transcriptome analysis revealed that the molecular mechanisms by which low temperature and NaBu arrested cell cycle in G1/G0 differed from each other through the deregulation of different cell cycle checkpoints and regulators. The individual transcriptome changes in pattern observed in response to low temperature and NaBu were retained when these two strategies were combined, leading to an additive effect in arresting the cell cycle in G1/G0 phase. The findings presented here offer novel molecular insights about the cell cycle regulation during the CHO cell bioprocessing and its implications for increased recombinant protein production. This data provides a background for engineering productivity-enhanced CHO cell lines for continuous manufacturing.
Collapse
|
3
|
Park JU, Han HJ, Baik JY. Energy metabolism in Chinese hamster ovary (CHO) cells: Productivity and beyond. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Behravan A, Hashemi A, Marashi SA. A Constraint-based modeling approach to reach an improved chemically defined minimal medium for recombinant antiEpEX-scFv production by Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
6
|
Torres M, Elvin M, Betts Z, Place S, Gaffney C, Dickson AJ. Metabolic profiling of Chinese hamster ovary cell cultures at different working volumes and agitation speeds using spin tube reactors. Biotechnol Prog 2020; 37:e3099. [PMID: 33169492 DOI: 10.1002/btpr.3099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Culture systems based on spin tube reactors have been consolidated in the development of manufacturing processes based on Chinese hamster ovary (CHO) cells. Despite their widespread use, there is little information about the consequences of varying operational setting parameters on the culture performance of recombinant CHO cell lines. Here, we investigated the effect of varying working volumes and agitation speeds on cell growth, protein production, and cell metabolism of two clonally derived CHO cell lines (expressing an IgG1 and a "difficult-to-express" fusion protein). Interestingly, low culture volumes increased recombinant protein production and decreased cell growth, while high culture volumes had the opposite effect. Altering agitation speeds exacerbated or moderated the differences observed due to culture volume changes. Combining low agitation rates with high culture volumes suppressed growth and recombinant protein production in CHO cells. Meanwhile, high agitation rates narrowed the differences in culture performance between low and high working volumes. These differences were also reflected in cell metabolism, where low culture volumes enhanced oxidative metabolism (linked to a productive phenotype) and high culture volume generated a metabolic profile that was predominately glycolytic (linked to a proliferative phenotype). Our findings indicate that the culture volume influence on metabolism modulates the balance between cell growth and protein production, a key feature that may be useful to adjust CHO cells toward a more productive phenotype.
Collapse
Affiliation(s)
- Mauro Torres
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| | - Mark Elvin
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| | - Zeynep Betts
- Department of Biology, Kocaeli University, Umuttepe Yerleskesi, Fen Edebiyat Fakultesi B Blok, Izmit, Turkey
| | - Svetlana Place
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| | - Claire Gaffney
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| | - Alan J Dickson
- Department of Chemical Engineering and Analytical Sciences, Faculty of Science & Engineering, Manchester Institute of Biotechnology, John Garside Building, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Biotechnol Lett 2020; 42:2523-2536. [DOI: 10.1007/s10529-020-02953-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022]
|