1
|
Ma W, Li Y, Liu P, Liu Z, Song T. Progress of Research into Preformed Particle Gels for Profile Control and Water Shutoff Techniques. Gels 2024; 10:372. [PMID: 38920919 PMCID: PMC11202449 DOI: 10.3390/gels10060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Gel treatment is an economical and efficient method of controlling excessive water production. The gelation of in situ gels is prone to being affected by the dilution of formation water, chromatographic during the transportation process, and thus controlling the gelation time and penetration depth is a challenging task. Therefore, a novel gel system termed preformed particle gels (PPGs) has been developed to overcome the drawbacks of in situ gels. PPGs are superabsorbent polymer gels which can swell but not dissolve in brines. Typically, PPGs are a granular gels formed based on the crosslinking of polyacrylamide, characterized by controllable particle size and strength. This work summarizes the application scenarios of PPGs and elucidates their plugging mechanisms. Additionally, several newly developed PPG systems such as high-temperature-resistant PPGs, re-crosslinkable PPGs, and delayed-swelling PPGs are also covered. This research indicates that PPGs can selectively block the formation of fractures or high-permeability channels. The performance of the novel modified PPGs was superior to in situ gels in harsh environments. Lastly, we outlined recommended improvements for the novel PPGs and suggested future research directions.
Collapse
Affiliation(s)
- Wei Ma
- Key Laboratory of Oilfield Chemistry of China National Petroleum Corporation, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China; (W.M.)
- College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
- National Elite Institute of Engineering, Beijing 100096, China
| | - Yikun Li
- Key Laboratory of Oilfield Chemistry of China National Petroleum Corporation, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China; (W.M.)
| | - Pingde Liu
- Key Laboratory of Oilfield Chemistry of China National Petroleum Corporation, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China; (W.M.)
| | - Zhichang Liu
- College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tao Song
- Key Laboratory of Oilfield Chemistry of China National Petroleum Corporation, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China; (W.M.)
| |
Collapse
|
2
|
Tello P, Santos J, Perez-Puyana VM, Romero A, Trujillo-Cayado LA. Characterization of emulgels formulated with phycocyanin and diutan gum as a novel approach for biocompatible delivery systems. Int J Biol Macromol 2024; 268:131599. [PMID: 38626840 DOI: 10.1016/j.ijbiomac.2024.131599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Phycocyanin (PC), a protein derived from algae, is non-toxic and biocompatible. Due to its environmental and sustainable properties, it has been studied as an alternative stabilizer for food emulsions. In this sense, the main objective of this work is to evaluate the effectiveness of PC and its use in combination with diutan gum (DG), a biological macromolecule, to prepare emulgels formulated with avocado oil. Z-potential measurements show that the optimum pH for working with PC is 2.5. Furthermore, the system exhibited a structured interface at this pH. The surface tension did not decrease further above 1.5 wt% PC. Interestingly, emulsions formulated with >1.5 wt% PC showed recoalescence immediately after preparation. Although 1.5 wt% had the smallest droplet size, this emulsion underwent creaming due to the low viscosity of the system. DG was used in combination with PC to increase viscosity and reduce creaming. As little as 0.1 wt% DG was sufficient to form an emulgel when incorporated into the previous emulsion, which exhibited pseudoplastic behaviour and viscoelastic properties with very low creaming rates. However, the use of PC in combination with DG resulted in a non-aggregated and stable emulgel with 1.5 wt% PC and 0.1 wt% DG.
Collapse
Affiliation(s)
- Patricia Tello
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África, 7, 41011 Sevilla, Spain
| | - Jenifer Santos
- Departamento de Ciencias de la Salud y Biomedicina, Facultad de Ciencias de la Salud, Universidad Loyola Andalucía, Avda. de las Universidades s/n, Dos Hermanas, 41704 Sevilla, Spain
| | - Víctor M Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/Tramontana s/n, 41012 Sevilla, Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/Tramontana s/n, 41012 Sevilla, Spain
| | - Luis A Trujillo-Cayado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África, 7, 41011 Sevilla, Spain.
| |
Collapse
|
3
|
Li L, Guo J, Kang C. LCST-UCST Transition Property of a Novel Retarding Swelling and Thermosensitive Particle Gel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2761. [PMID: 37049054 PMCID: PMC10096131 DOI: 10.3390/ma16072761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Super absorbent resin particles used as profile control and water plugging agent remains a deficiency that the particles swells with high speed when absorbing water, resulting in low strength and limited depth of migration. To address this issue, we proposed a thermosensitive particle gel possessing the upper critical solution temperature (UCST), which was synthesized from hydrophobically modified poly(vinyl alcohol)s (PVA) with glutaraldehyde (GA) as a cross-linker. The structure of the hydrogel was characterized by Fourier transform infrared spectrophotometer (FTIR) and nuclear magnetic resonance (NMR). The thermosensitive-transparency measurement and swelling experiment show that the hydrophobic-modified PVA solutions and corresponding hydrogels exhibited thermosensitive phase transition behaviors with lower critical solution temperature (LCST) and UCST. The results indicated that the temperature-induced phase transition behavior of CHPVA hydrogels leads to their retarding swelling property and great potential as an efficient water plugging agent with excellent temperature and salt resistance.
Collapse
|
4
|
Extensional Rheology of Hydrophobically Associating Polyacrylamide Solution Used in Chemical Flooding: Effects of Temperature, NaCl and Surfactant. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Bai Y, Lian Y, Zhao J, Cao Z, Sun J, Zhang H. Thermal-insulation and temperature-resistant foamed gel for thermal management of heavy oil steam flooding. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Adsorption of Welan Gum on Montmorillonite and Its Influencing Factors. Polymers (Basel) 2022; 14:polym14132599. [PMID: 35808645 PMCID: PMC9269374 DOI: 10.3390/polym14132599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Welan gum is one of the most promising polymers used in polymer flooding for enhancing oil recovery, due to its excellent temperature resistance and salt-tolerance performance. However, welan gum, as a polymer with higher molecular weight, can be adsorbed and detained in the pore throat of the reservoir, which is characterized by a smaller size. Montmorillonite, a kind of clay mineral with high content in reservoir rocks, has strong adsorption capacity. Therefore, the adsorption behavior of welan gum on montmorillonite, as well as its influencing factors, are studied in this paper. The results show that the adsorption capacity is 2.07 mg/g. The adsorption capacity decreased with the increase in temperature. Both acidic and alkaline conditions reduced the adsorption capacity. The existence of inorganic salt affected the adsorption capacity. In addition, the higher the cation value, the lower the adsorption capacity. The characterization tests showed that the adsorption of welan gum on montmorillonite was characterized by physical adsorption and surface adsorption, indicating that there were no changes in the internal structure of montmorillonite. This study provides feasible methods to reduce the amount of welan gum adsorbed on montmorillonite, which is of great significance for reducing the permeability damage caused by welan gum adsorption and promoting the application of welan gum in polymer flooding for enhancing oil recovery.
Collapse
|
7
|
Huang H, Lin J, Wang W, Li S. Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production. Polymers (Basel) 2022; 14:1920. [PMID: 35567089 PMCID: PMC9104527 DOI: 10.3390/polym14091920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Sphingomonas was established by Yabuuchi et al. in 1990, and has attracted much attention in recent years due to its unique ability to degrade environmental pollutants. Some Sphingomonas species can secrete high-molecular-weight extracellular polymers called sphingans, most of which are acidic heteropolysaccharides. Typical sphingans include welan gum, gellan gum, and diutan gum. Most sphingans have a typical, conserved main chain structure, and differences of side chain groups lead to different rheological characteristics, such as shear thinning, temperature or salt resistance, and viscoelasticity. In petroleum production applications, sphingans, and their structurally modified derivatives can replace partially hydrolyzed polyacrylamide (HPAM) for enhanced oil recovery (EOR) in high-temperature and high-salt reservoirs, while also being able to replace guar gum as a fracturing fluid thickener. This paper focuses on the applications of sphingans and their derivatives in EOR.
Collapse
Affiliation(s)
- Haolin Huang
- College of Biotechnology and Pharmaceutical Engineering, Jiangpu Campus, Nanjing Tech University, Nanjing 211816, China;
| | - Junzhang Lin
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, China; (J.L.); (W.W.)
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, China; (J.L.); (W.W.)
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Jiangpu Campus, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
8
|
Santos J, Trujillo-Cayado LA, Carrello H, Cidade MT, Alfaro MC. Optimization of sonication parameters to obtain food emulsions stabilized by zein: formation of zein-diutan gum/zein-guar gum complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2127-2134. [PMID: 34605029 DOI: 10.1002/jsfa.11554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Zein as a sole material is not suitable for technological applications since it is not flexible. A possible solution to extend the applications of zein is the formation of zein-polysaccharide complexes. As a first step, sonication parameters were optimized to obtain finer emulsions formulated with zein, rosemary essential oil as food preservative, and sunflower oil, by means of response surface methodology. After the formation of these guar- or diutan-zein complexes the rheological properties of these food emulsions were evaluated. RESULTS An increase in sonication power, sonication time and cycles provoked a decrease in mean droplet size and a lack of recoalescence. The optimized emulsion was the starting point to form two different complexes: zein with diutan gum and zein with guar gum at different concentrations. Rheological properties as well as the microstructure observed by field emission scanning electron microscopy (FESEM) were analyzed. Interestingly, zein-guar gum complexes did not form a rheological gel; as a consequence, emulsions containing them seem to undergo a destabilization process with aging time. In contrast, emulsions formulated with zein-diutan gum presented a 3D network, observed by FESEM technique and proved by rheological measurements. CONCLUSION While emulsions containing zein-guar gum complexes did not form networks to stabilize oil droplets, zein-diutan gum complexes did. This work brings to light the importance of the selection of polysaccharide used in food emulsions formulated with zein. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenifer Santos
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Luis A Trujillo-Cayado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Henrique Carrello
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Caparica, Portugal
| | - Maria T Cidade
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Caparica, Portugal
| | - Maria-Carmen Alfaro
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
9
|
Hu X, Pan Y, Bao M, Zhang X, Luo C, Han X, Li F. The structure, properties and rheological characterisation of exopolysaccharides produced by Chryseobacterium cucumeris AP-2 from deteriorated milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Abstract
Simultaneous utilization of surfactant and preformed particle gel (henceforth; PPG) flooding on the oil recovery enhancement has been widely investigated as a preferable enhanced oil recovery technique after the polymer flooding. In this paper, a numerical model is developed to simulate the profound impact of hybrid chemical enhanced oil recovery methods (PPG/polymer/surfactant) in sandstone reservoirs. Moreover, the gel particle conformance control is considered in the developed model after polymer flooding performances on the oil recovery enhancement. To validate the developed model, two sets of experimental field data from Daqing oil field (PPG conformance control after polymer flooding) and Shengli oil field (PPG-surfactant flooding after polymer flooding) are used to check the reliability of the model. Combination of preformed gel particles, polymers and surfactants due to the deformation, swelling, and physicochemical properties of gel particles can mobilize the trapped oil through the porous media to enhance oil recovery factor by blocking the high permeable channels. As a result, PPG conformance control plays an essential role in oil recovery enhancement. Furthermore, experimental data of PPG/polymer/surfactant flooding in the Shengli field and its comparison with the proposed model indicated that the model and experimental field data are in a good agreement. Consequently, the coupled model of surfactant and PPG flooding after polymer flooding performances has led to more recovery factor rather than the basic chemical recovery techniques.
Collapse
|