1
|
Cui Y, He S, Yang J, Gao R, Hu K, Chen X, Xu L, Deng C, Lin C, Peng S, Zhang C. Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation. Molecules 2024; 29:374. [PMID: 38257287 PMCID: PMC10821115 DOI: 10.3390/molecules29020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The extensive utilization of fossil fuels has led to a rapid increase in atmospheric CO2 concentration, resulting in various environmental issues. To reduce reliance on fossil fuels and mitigate CO2 emissions, it is important to explore alternative methods of utilizing CO2 and H2 as raw materials to obtain high-value-added chemicals or fuels. One such method is CO2 methanation, which converts CO2 and H2 into methane (CH4), a valuable fuel and raw material for other chemicals. However, CO2 methanation faces challenges in terms of kinetics and thermodynamics. The reaction rate, CO2 conversion, and CH4 yield need to be improved to make the process more efficient. To overcome these challenges, the development of suitable catalysts is essential. Non-noble metal catalysts have gained significant attention due to their high catalytic activity and relatively low cost. In this paper, the thermodynamics and kinetics of the CO2 methanation reaction are discussed. The focus is primarily on reviewing Ni-based, Co-based, and other commonly used catalysts such as Fe-based. The effects of catalyst supports, preparation methods, and promoters on the catalytic performance of the methanation reaction are highlighted. Additionally, the paper summarizes the impact of reaction conditions such as temperature, pressure, space velocity, and H2/CO2 ratio on the catalyst performance. The mechanism of CO2 methanation is also summarized to provide a comprehensive understanding of the process. The objective of this paper is to deepen the understanding of non-noble metal catalysts in CO2 methanation reactions and provide insights for improving catalyst performance. By addressing the limitations of CO2 methanation and exploring the factors influencing catalyst effectiveness, researchers can develop more efficient and cost-effective catalysts for this reaction.
Collapse
Affiliation(s)
- Yingchao Cui
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shunyu He
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Jun Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Ruxing Gao
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Kehao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Xixi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Lujing Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Chao Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Congji Lin
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shuai Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Chundong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| |
Collapse
|
2
|
Rahman A, Jalil A, Hamid M, Hussain I, Hassan N, Khoja AH. Improved ethylbenzene suppression and coke-resistance on benzene methylation over metals doped fibrous silica-HZSM-5 zeolite. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Sharif HMA, Farooq M, Hussain I, Ali M, Mujtaba M, Sultan M, Yang B. Recent innovations for scaling up microbial fuel cell systems: Significance of physicochemical factors for electrodes and membranes materials. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Hussain I, Jalil AA, Hamid MYS, Hassan NS. Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review. CHEMOSPHERE 2021; 277:130285. [PMID: 33794437 DOI: 10.1016/j.chemosphere.2021.130285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.
Collapse
Affiliation(s)
- I Hussain
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - M Y S Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| |
Collapse
|