1
|
Ly K, Pathan A, Rackus DG. A review of electrochemical sensing in droplet systems: Droplet and digital microfluidics. Anal Chim Acta 2025; 1347:343744. [PMID: 40024652 DOI: 10.1016/j.aca.2025.343744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Microfluidic technologies based on droplets provide discrete volumes within which chemical and/or biological processes can take place. Two major platforms in this space include droplet microfluidics (emulsions within channels) and digital microfluidics (discrete droplet manipulation by electric fields). The integration of electrochemical sensing with both microfluidic platforms offers advantages in miniaturization and portability, as sensors can be integrated directly within the microfluidic devices and instrumentation is relatively compact. RESULTS This review provides background on droplet and digital microfluidic technologies and electrochemical sensing before moving to methods and applications. A discussion of the various strategies to integrate sensing electrodes with both droplet and digital microfluidics and the merits of each method are included. A review of the many different applications of these integrated systems is provided. SIGNIFICANCE AND NOVELTY To date, there are no reviews that solely focus on the integration of electrochemical sensing with droplet and digital microfluidics. There are many advantages to combining electrochemical sensing with these platforms, especially for applications where portability or small form factors are paramount. While early reports on integrating electrochemical sensing with droplet and digital microfluidics are more than a decade old, the field is still relatively nascent, offering opportunity for many applications.
Collapse
Affiliation(s)
- Kathy Ly
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, Ontario, Canada, M5B 2K3; Institute for Biomedical Engineering, Science, and Technology (iBEST) - A Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan University Toronto, Canada, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, M5B 1T8, Canada
| | - Aaliya Pathan
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, Ontario, Canada, M5B 2K3; Institute for Biomedical Engineering, Science, and Technology (iBEST) - A Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan University Toronto, Canada, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, M5B 1T8, Canada
| | - Darius G Rackus
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, Ontario, Canada, M5B 2K3; Institute for Biomedical Engineering, Science, and Technology (iBEST) - A Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan University Toronto, Canada, M5B 1W8, Canada; Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, M5B 1T8, Canada.
| |
Collapse
|
2
|
Parveen S, Basu M, Chowdhury P, Dhara T, DasGupta S, Das S, Dasgupta S. Surface modification of polydimethylsiloxane by the cataractous eye protein isolate. Int J Biol Macromol 2024; 260:129470. [PMID: 38237817 DOI: 10.1016/j.ijbiomac.2024.129470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Polydimethylsiloxane (PDMS), even though widely used in microfluidic applications, its hydrophobic nature restricts its utility in some cases. To address this, PDMS may be used in conjunction with a hydrophilic material. Herein, the PDMS surface is modified by plasma treatment followed by cross-linking with the cataractous eye protein isolate (CEPI). CEPI-PDMS composites are prepared at three pH and the effects of CEPI on the chemical, physical, and electrical properties of PDMS are extensively investigated. The cross-linking between PDMS and the protein are confirmed by FTIR, and the contact angle measurements indicate the improved hydrophilic nature of the composite films as compared to PDMS. Atomic Force Microscopy results demonstrate that the surface roughness is enhanced by the incorporation of the protein and is a function of the pH. The effective elastic modulus of the composites is improved by the incorporation of protein into the PDMS matrix. Measurements of the dielectric properties of these composites indicate that they behave as capacitors at lower frequency range while demonstrating resistive characteristics at higher frequency. These composites provide preliminary ideas in developing flexible devices for potential applications in diverse areas such as energy storage materials, and thermo-elective wireless switching devices.
Collapse
Affiliation(s)
- Sultana Parveen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mainak Basu
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Prasun Chowdhury
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Trina Dhara
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunando DasGupta
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Soumen Das
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
3
|
Guo Y, Guo H, He D, Sun J, Chen W, Song Y, Zhou G. Development of Cyclic Tetrasiloxane Polymer as a High-Performance Dielectric and Hydrophobic Layer for Electrowetting Displays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46470-46482. [PMID: 37738528 DOI: 10.1021/acsami.3c08188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Cyclic tetrasiloxane polymer (CTP) has recently garnered interest as a hydrophobic material with unique properties. This study aims to enhance the dielectric constant of CTP films by introducing excess Si-H groups and to explore the impact of synthesis and processing conditions on the resulting properties. The film demonstrates high hydrophobicity, with contact angles of 107° in air and 165° in n-decane, along with a notable dielectric constant of 5.1°. Furthermore, the CTP film displays reversible electrowetting behavior with low contact angle hysteresis (2°) and possesses good transparency (∼99%) and thermal stability. As such, the CTP film has significant potential as a material for the electric wetting of hydrophobic dielectric layers and may serve as a promising alternative in electrowetting applications.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Shenzhen Guohua Optoelectronics Tech., Co., Ltd., Shenzhen 518110, China
- Academy of Shenzhen Guohua Optoelectronics, Shenzhen 518110, China
| | - Hao Guo
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Dinggui He
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jiaqi Sun
- University of Chinese Academy of Sciences, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201, China
| | - Wangqiao Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yujie Song
- University of Chinese Academy of Sciences, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Shenzhen Guohua Optoelectronics Tech., Co., Ltd., Shenzhen 518110, China
- Academy of Shenzhen Guohua Optoelectronics, Shenzhen 518110, China
| |
Collapse
|
4
|
Selim MS, Fatthallah NA, Shenashen MA, Higazy SA, Madian HR, Selim MM, El-Safty SA. Bioinspired Graphene Oxide-Magnetite Nanocomposite Coatings as Protective Superhydrophobic Antifouling Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2333-2346. [PMID: 36719844 DOI: 10.1021/acs.langmuir.2c03061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antifouling (AF) nanocoatings made of polydimethylsiloxane (PDMS) are more cost-efficient and eco-friendly substitutes for the already outlawed tributyltin-based coatings. Here, a catalytic hydrosilation approach was used to construct a design inspired by composite mosquito eyes from non-toxic PDMS nanocomposites filled with graphene oxide (GO) nanosheets decorated with magnetite nanospheres (GO-Fe3O4 nanospheres). Various GO-Fe3O4 hybrid nanofillers were dispersed into the PDMS resin through a solution casting method to evaluate the structure-property relationship. A simple coprecipitation procedure was used to fabricate magnetite nanospheres with an average diameter of 30-50 nm, a single crystal structure, and a predominant (311) lattice plane. The uniform bioinspired superhydrophobic PDMS/GO-Fe3O4 nanocomposite surface produced had a micro-/nano-roughness, low surface-free energy (SFE), and high fouling release (FR) efficiency. It exhibited several advantages including simplicity, ease of large-area fabrication, and a simultaneous offering of dual micro-/nano-scale structures simply via a one-step solution casting process for a wide variety of materials. The superhydrophobicity, SFE, and rough topology have been studied as surface properties of the unfilled silicone and the bioinspired PDMS/GO-Fe3O4 nanocomposites. The coatings' physical, mechanical, and anticorrosive features were also taken into account. Several microorganisms were employed to examine the fouling resistance of the coated specimens for 1 month. Good dispersion of GO-Fe3O4 hybrid fillers in the PDMS coating until 1 wt % achieved the highest water contact angle (158° ± 2°), the lowest SFE (12.06 mN/m), micro-/nano-roughness, and improved bulk mechanical and anticorrosion properties. The well-distributed PDMS/GO-Fe3O4 (1 wt % nanofillers) bioinspired nanocoating showed the least biodegradability against all the tested microorganisms [Kocuria rhizophila (2.047%), Pseudomonas aeruginosa (1.961%), and Candida albicans (1.924%)]. We successfully developed non-toxic, low-cost, and economical nanostructured superhydrophobic FR composite coatings for long-term ship hull coatings. This study may expand the applications of bio-inspired functional materials because for multiple AF, durability and hydrophobicity are both important features in several industrial applications.
Collapse
Affiliation(s)
- Mohamed S Selim
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Nesreen A Fatthallah
- Processes Design & Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Mohamed A Shenashen
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken305-0047, Japan
| | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Hekmat R Madian
- Processes Design & Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City11727, Cairo, Egypt
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj11942, Saudi Arabia
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken305-0047, Japan
| |
Collapse
|
5
|
Verma G, Sheshkar N, Pandey C, Gupta A. Recent trends of silicon elastomer-based nanocomposites and their sensing applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03044-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Liu L, Liu C, Zhang B, Gao L. Detection of Chymotrypsin Using Peptide Sensor Based on Graphene Oxide Modified with Sulfhydryl Group and Gold Nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj02644a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, GO modified with sulfhydryl group was prepared by thiolation on the surface of GO, which makes a meaningful material. GO with sulfhydryl group combined with gold nanoparticles,...
Collapse
|