1
|
Li R, Kamali AR. Molten salt assisted conversion of corn lignocellulosic waste into carbon nanostructures with enhanced Li-ion storage performance. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Zhao J, Tang Z, Wang Z, Xi M, Xie X, Yang G. Flexible zinc ion hybrid supercapacitors enabled by N/S co-doped porous carbon and bacterial cellulose/ZnSO4 electrolyte. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Lou X, Chen X, Tang D, Wang Q, Tian Y, Tu M, Wang Y, Ye C, Chen J, Qiu T. Conjugated Microporous Poly(aniline) Enabled Hierarchical Porous Carbons for Hg(II) Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13238-13247. [PMID: 36260748 DOI: 10.1021/acs.langmuir.2c02240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hierarchical porous carbons equipped with heteroatoms and diffusion pores have a wide application prospect in adsorption. Herein, we report N-autodoped porous carbons (PTPACs), which were derived from rigid N-rich conjugated microporous poly(aniline)s (CMPAs) and show their all-around applicability in heavy metal adsorption. Their molecular structure could be delicately tuned from 3D organic networks to graphitic carbons through simply adjusting the pyrolysis temperature, affording unique hybrid features of hierarchical micro-meso-macroporosity and amount-tunable nitrogen defects, as validated by the enhanced CO2 adsorption capacities reaching 5.0 mmol g-1, a 230% increase compared to the precursor (2.15 mmol g-1). They therefore show promising a Langmuir adsorption capacity of 434.8 mg g-1 toward mercury ions, which could be rapidly achieved within a short 20 min. Based on the comprehensive experimental, characterization, and DFT calculation studies, we rationally reveal these impressive adsorptions arise from the hybrid function of chemisorption contributed by populated nitrogen defects and physical adsorption achieved by synergistic functions in the diffusion and storage pores. Outcomes mark the high merits of PTPACs in addressing recent global challenges in environmental engineering.
Collapse
Affiliation(s)
- Xiaoyu Lou
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Xiaoyan Chen
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Duanlian Tang
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Qiong Wang
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yukun Tian
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Menghan Tu
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yupeng Wang
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Changshen Ye
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Jie Chen
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Ting Qiu
- Engineering Research Centre of Reactive Distillation, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
4
|
Bian Z, Wang H, Zhao X, Ni Z, Zhao G, Chen C, Hu G, Komarneni S. Optimized mesopores enable enhanced capacitance of electrochemical capacitors using ultrahigh surface area carbon derived from waste feathers. J Colloid Interface Sci 2022; 630:115-126. [DOI: 10.1016/j.jcis.2022.09.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/29/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
|
5
|
Jiang M, Dong R, Liao H, Liu Y, Wang Y, Tan P, Pan J. Ru-optimized geometric sites of cations in CoFe/CoFe2O4 electrocatalysts with graphitic carbon shells for boosting water oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Fan X, Zhang W, Xu Y, Zheng J, Li Y, Fan X, Zhang F, Ji J, Peng W. Porous Structure Engineering of N-doped Carbons for Enhanced Mass transfer towards High-Performance Supercapacitors and Li-Ion Batteries. J Colloid Interface Sci 2022; 624:51-59. [DOI: 10.1016/j.jcis.2022.05.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/14/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
|