1
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
2
|
Ahmadpour A, Shojaeian M, Tasoglu S. Deep learning-augmented T-junction droplet generation. iScience 2024; 27:109326. [PMID: 38510144 PMCID: PMC10951907 DOI: 10.1016/j.isci.2024.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Droplet generation technology has become increasingly important in a wide range of applications, including biotechnology and chemical synthesis. T-junction channels are commonly used for droplet generation due to their integration capability of a larger number of droplet generators in a compact space. In this study, a finite element analysis (FEA) approach is employed to simulate droplet production and its dynamic regimes in a T-junction configuration and collect data for post-processing analysis. Next, image analysis was performed to calculate the droplet length and determine the droplet generation regime. Furthermore, machine learning (ML) and deep learning (DL) algorithms were applied to estimate outputs through examination of input parameters within the simulation range. At the end, a graphical user interface (GUI) was developed for estimation of the droplet characteristics based on inputs, enabling the users to preselect their designs with comparable microfluidic configurations within the studied range.
Collapse
Affiliation(s)
- Abdollah Ahmadpour
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul 34450, Türkiye
| | - Mostafa Shojaeian
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul 34450, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
- Koç University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
| |
Collapse
|
3
|
Jung SH, Meyer F, Hörnig S, Bund M, Häßel B, Guerzoni LPB, De Laporte L, Ben Messaoud G, Centeno SP, Pich A. On-Chip Fabrication of Colloidal Suprastructures by Assembly and Supramolecular Interlinking of Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303444. [PMID: 37705132 DOI: 10.1002/smll.202303444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Indexed: 09/15/2023]
Abstract
In this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase. To stabilize the colloidal suprastructure, on-chip gelation is introduced by adding natural polyphenol tannic acid (TA) in the water phase. TA forms interparticle linking between the poly(N-vinylcaprolactam) (PVCL) microgels by supramolecular interactions. The combination of supramolecular interlinking with the variation of the microgel concentration in microfluidic droplets enables on-chip fabrication of defined colloidal suprastructures with morphologies ranging from colloidosomes to colloidal supraballs. The obtained supracolloidal structures exhibit a pH-responsive behavior with a disintegration at alkaline conditions within a scale of seconds. The destabilization process results from the deprotonation of phenolic groups and destruction of hydrogen bonds with PVCL chains at higher pH.
Collapse
Affiliation(s)
- Se-Hyeong Jung
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Fabian Meyer
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Sven Hörnig
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Michelle Bund
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Bernhard Häßel
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | | | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ghazi Ben Messaoud
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Silvia P Centeno
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen, 6167, The Netherlands
| |
Collapse
|
4
|
Ryu J, Kim J, Han KH. dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control. LAB ON A CHIP 2023; 23:1896-1904. [PMID: 36877075 DOI: 10.1039/d2lc01069k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A cost-effective, simple to use, and automated technique that can provide real-time feedback control for droplet generation is required to obtain droplets with high-throughput, stability, and uniformity. This study introduces a disposable droplet generation microfluidic device (dDrop-Chip) that can simultaneously control both droplet size and production rate in real time. The dDrop-Chip consists of a reusable sensing substrate and a disposable microchannel that can be assembled using vacuum pressure. It also integrates a droplet detector and a flow sensor on-chip, enabling real-time measurement and feedback control of droplet size and sample flow rate. The dDrop-Chip has the additional advantage of being disposable, which can prevent chemical and biological contamination, due to low manufacturing cost by the film-chip technique. We demonstrate benefits of the dDrop-Chip by controlling droplet size at a fixed sample flow rate and the production rate at a fixed droplet size using real-time feedback control. The experimental results show that the dDrop-Chip consistently generates monodisperse droplets with a length of 219.36 ± 0.08 μm (CV 0.036%) at a production rate of 32.38 ± 0.48 Hz using the feedback control, while without feedback control, there is a significant deviation in droplet length (224.18 ± 6.69 μm, CV 2.98%) and production rate (33.94 ± 1.72 Hz) despite the use of identical devices. Therefore, the dDrop-Chip is a reliable, cost-effective, and automated technique for generating droplets of controlled size and production rate in real time, making it suitable for various droplet-based applications.
Collapse
Affiliation(s)
- Jaewook Ryu
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197, Inje-Ro, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Junhyeong Kim
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197, Inje-Ro, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Ki-Ho Han
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197, Inje-Ro, Gimhae 50834, Gyeongnam, Republic of Korea.
| |
Collapse
|
5
|
Zhou M, Shi X, Li X, Xiao G, Liang L, Ju J, Wang F, Xia Q, Sun W, Qiao Y, Yu L, Lu Z. Constructing Silk Fibroin-Based Three-Dimensional Microfluidic Devices via a Tape Mask-Assisted Multiple-Step Etching Technique. ACS APPLIED BIO MATERIALS 2021; 4:8039-8048. [PMID: 35006785 DOI: 10.1021/acsabm.1c00948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Regenerated silk fibroin (RSF) has been regarded as a very promising biomaterial for the preparation of microfluidic devices. However, the facile and low-cost fabrication of three-dimensional (3D) RSF microfluidic devices is still a great challenge. Herein, we developed a tape-mask-assisted multiple-step etching technique to fabricate 3D microfluidic devices based on water-annealed RSF films. Several rounds of tape adhesion- or peeling-etching cycles need to be conducted to produce 3D features on the RSF films with the LiBr aqueous solution as the etchant. The water-annealed RSF films could be effectively etched with 1.0 g·mL-1 LiBr solution at 60 °C. The shape, width, and height of the 3D structures could be precisely tailored by controlling the mask pattern, etching conditions, and the number of etchings. Using the tape adhesion- and peeling-assisted multiple-etching techniques, the convex-pyramid-shaped and the concave-step-shaped structures could be successfully prepared on the RSF films, respectively. The RSF-film-based 3D micromixers and microfluidic separator were also manufactured with the proposed approach, exhibiting excellent liquid mixing and size-dependent particle sorting capabilities, respectively. The enzymatic degradation of RSF-film-based devices was also investigated to show their environmental friendliness. This work may not only provide a facile and low-cost method for the fabrication of RSF-based 3D microfluidic devices but also extend the applications of RSF in the fields of biomedical and chemical analysis.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xuemei Shi
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiaobai Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China.,Sannuo Biosensing Company Limited, 265 Guyuan Road, Changsha, Hunan 410221, P. R. China
| | - Gang Xiao
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Liping Liang
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Jun Ju
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Feng Wang
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, P. R. China
| | - Qingyou Xia
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P. R. China
| | - Yan Qiao
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 2 Tiansheng Road, Chongqing 400715, P. R. China
| |
Collapse
|