1
|
Marcozzi T, Baviriseaty S, Yawman P, Zhang S, Vervaet C, Vanhoorne V, Andersen SK. Synchrotron computed tomography combined with AI-based image analysis for the advanced characterization of spray dried amorphous solid dispersion particles. J Pharm Sci 2025; 114:530-543. [PMID: 39549833 DOI: 10.1016/j.xphs.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Particle engineering aims to design particles with specific properties. A deeper understanding of how particle formation relates to material attributes and process conditions are critical to strengthen knowledge on powder properties and enhance modeling capabilities. New, alternative powder characterization techniques can offer novel and more accurate measures for particle properties, giving more advanced characterization information. In this context, a case study is presented in which spray dried amorphous solid dispersion powders produced by modifying process conditions were characterized by both well-established compendial methods (i.e., laser light diffraction, SEM image analysis, bulk and tapped density, and gas adsorption), as well as a new method combining synchrotron computed tomography (SyncCT) with AI-based image analysis. SyncCT was used to classify and quantify the spray dried particles as hollow spheres and solid particles, giving a more detailed quality measure of the particle shape, as they impact downstream processing differently. Moreover, hollow particle wall thicknesses, as well as internal and external particle surface areas were measured by SyncCT. Altogether, powder characterization data from SyncCT show similar trends to that obtained from compendial techniques and giving additional quality measure regarding particle shape, showing promise of this new and advanced characterization method.
Collapse
Affiliation(s)
- Tatiana Marcozzi
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium; Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Sruthika Baviriseaty
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Phillip Yawman
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Shawn Zhang
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Chris Vervaet
- Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valérie Vanhoorne
- Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | | |
Collapse
|
2
|
van der Sman R, Curatolo M, Teresi L. Pore development in viscoelastic foods during drying. SOFT MATTER 2024; 20:5183-5194. [PMID: 38895807 DOI: 10.1039/d4sm00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this paper, we present a numerical model that can describe the pore formation/cavitation in viscoelastic food materials during drying. The food material has been idealized as a spherical object, with a core/shell structure and a central gas-filled cavity. The shell represents a skin as present in fruits/vegetables, having a higher elastic modulus than the tissue, which we approximate as a hydrogel. The gas-filled pore is in equilibrium with the core hydrogel material, and it represents pores in food tissues as present in intercellular junctions. The presence of a rigid skin is a known prerequisite for cavitation (inflation of the pore) during drying. For modeling, we follow the framework of Suo and coworkers, describing the inhomogeneous large deformation of soft materials like hydrogels - where stresses couple back to moisture transport. In this paper, we have extended such models with energy transport and viscoelasticity, as foods are viscoelastic materials, which are commonly heated during their drying. To approach the realistic properties of food materials we have made viscoelastic relaxation times a function of Tg/T, the ratio of (moisture dependent) glass transition temperature and actual product temperature. We clearly show that pore inflation only occurs if the skin gets into a glassy state, as has been observed during the (spray) drying of droplets of soft materials like foods.
Collapse
Affiliation(s)
- Ruud van der Sman
- Wageningen-Food & Biobased Research, Wageningen University & Research, The Netherlands.
- Food Process Engineering, Wageningen University & Research, The Netherlands
| | | | | |
Collapse
|
3
|
Xu H, Wu L, Xue Y, Yang T, Xiong T, Wang C, He S, Sun H, Cao Z, Liu J, Wang S, Li Z, Naeem A, Yin X, Zhang J. Advances in Structure Pharmaceutics from Discovery to Evaluation and Design. Mol Pharm 2023; 20:4404-4429. [PMID: 37552597 DOI: 10.1021/acs.molpharmaceut.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Drug delivery systems (DDSs) play an important role in delivering active pharmaceutical ingredients (APIs) to targeted sites with a predesigned release pattern. The chemical and biological properties of APIs and excipients have been extensively studied for their contribution to DDS quality and effectiveness; however, the structural characteristics of DDSs have not been adequately explored. Structure pharmaceutics involves the study of the structure of DDSs, especially the three-dimensional (3D) structures, and its interaction with the physiological and pathological structure of organisms, possibly influencing their release kinetics and targeting abilities. A systematic overview of the structures of a variety of dosage forms, such as tablets, granules, pellets, microspheres, powders, and nanoparticles, is presented. Moreover, the influence of structures on the release and targeting capability of DDSs has also been discussed, especially the in vitro and in vivo release correlation and the structure-based organ- and tumor-targeting capabilities of particles with different structures. Additionally, an in-depth discussion is provided regarding the application of structural strategies in the DDSs design and evaluation. Furthermore, some of the most frequently used characterization techniques in structure pharmaceutics are briefly described along with their potential future applications.
Collapse
Affiliation(s)
- Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ting Yang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeying Cao
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siwen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xianzhen Yin
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 201602, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
4
|
A Critical Review on Engineering of d-Mannitol Crystals: Properties, Applications, and Polymorphic Control. CRYSTALS 2022. [DOI: 10.3390/cryst12081080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
d-mannitol is a common six-carbon sugar alcohol, which is widely used in food, chemical, pharmaceutical, and other industries. Polymorphism is defined as the ability of materials to crystallize into different crystal structures. It has been reported for a long time that d-mannitol has three polymorphs: β, δ, and α. These different polymorphs have unique physicochemical properties, thus affecting the industrial applications of d-mannitol. In this review, we firstly introduced the characteristics of different d-mannitol polymorphs, e.g., crystal structure, morphology, molecular conformational energy, stability, solubility and the analytical techniques of d-mannitol polymorphisms. Then, we described the different strategies for the preparation of d-mannitol crystals and focused on the polymorphic control of d-mannitol crystals in the products. Furthermore, the factors of the formation of different d-mannitol polymorphisms were summarized. Finally, the application of mannitol polymorphism was summarized. The purpose of this paper is to provide new ideas for a more personalized design of d-mannitol for various applications, especially as a pharmaceutical excipient. Meanwhile, the theoretical overview on polymorphic transformation of d-mannitol may shed some light on the crystal design study of other polycrystalline materials.
Collapse
|