1
|
Bhoir K, Prakash G, Odaneth A. Genetic Engineering of Yarrowia lipolytica for 1,8-cineole production: A sustainable approach. Enzyme Microb Technol 2025; 189:110659. [PMID: 40273641 DOI: 10.1016/j.enzmictec.2025.110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
1,8-Cineole, a monoterpene with diverse industrial and pharmaceutical applications, has garnered significant interest due to its unique properties. This study aims to achieve sustainable production of 1,8-cineole from Yarrowia lipolytica through metabolic and media engineering strategies. The heterologous 1,8-cineole synthase from Streptomyces clavuligerus was integrated through CRISPR-Cas9, along with overexpression of key genes in the mevalonate pathway and a double mutation in the Erg20p to enhance flux towards geranyl pyrophosphate. The modified strain was further investigated for varying carbon and nitrogen sources with MgSO4 addition. The above approaches achieved a titer of 4.68 mg/L of 1,8-cineole along with 1108.53 mg/L of intracellular squalene when grown on 5 % WCO, marking the first report of genetic engineering of Y. lipolytica for 1,8-cineole production. Further studies are in progress to redirect internal fluxes to 1,8-cineole for improvising yields and productivities. This work shows a sustainable and innovative approach to biotechnology improvements in terpene biosynthesis and waste valorization.
Collapse
Affiliation(s)
- Krutika Bhoir
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India
| | - Gunjan Prakash
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India
| | - Annamma Odaneth
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
2
|
Martín-González J, Montero-Bullón JF, Muñoz-Fernández G, Buey RM, Jiménez A. Valorization of waste cooking oil for bioproduction of industrially-relevant metabolites in Ashbya gossypii. N Biotechnol 2025; 88:S1871-6784(25)00040-8. [PMID: 40204081 DOI: 10.1016/j.nbt.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/30/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Waste cooking oil (WCO) is a byproduct of culinary processes, which undergoes degradation due to high temperatures during frying and cooking. Beyond its detrimental effects on health, including potential carcinogenic effects, WCO poses a significant environmental threat, emphasizing the need for urgent recycling efforts. Valorization of WCO as a carbon source for microbial fermentations emerges as a feasible alternative in a bioeconomy context. The aim of the present work is to explore the ability of Ashbya gossypii, a natural overproducer of riboflavin that is currently used in the industrial production of the vitamin, to exploit WCO for the production of industrially relevant metabolites such as riboflavin, folates, biolipids and monoterpenes. Our results demonstrate that WCO is an effective carbon source for A. gossypii bioproduction of riboflavin, folates and biolipids, reaching among the highest titers described so far in flask fermentation: riboflavin titer (312.5mg/L) increased 4.8-fold compared to glucose-based medium; folate production reached 7.6mg/L; and the intracellular lipids were above 80% of the cell dry weight. In contrast, the production of the monoterpenes limonene and sabinene was not improved with the utilization of WCO. Taken together, our results present a proof-of-principle for the implementation of a novel bioprocess for the valorization of WCO using the industrial fungus A. gossypii.
Collapse
Affiliation(s)
- Javier Martín-González
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Javier-Fernando Montero-Bullón
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Gloria Muñoz-Fernández
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads Building 223, 2800 Kgs. Lyngby, Denmark
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|
3
|
Caporusso A, Radice M, Biundo A, Gorgoglione R, Agrimi G, Pisano I. Waste cooking oils as a sustainable feedstock for bio-based application: A systematic review. J Biotechnol 2025; 400:48-65. [PMID: 39952410 DOI: 10.1016/j.jbiotec.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Waste cooking oils (WCOs) are common wastes and promising green, eco-friendly and sustainable feedstocks for bio-based applications. While the primary valorisation strategy revolves around the concept of waste-to energy, new research trends have emerged in the last decade. This systematic review provides a comprehensive analysis of the current state of the art in the conversion of WCOs into bio-based molecules. Based on the PRISMA methodology, 64 papers were selected using different databases and sources, such as: PubMed, ScienceDirect, Scopus and MDPI. The data extraction process focused on studies reporting the biological and chemical conversion of WCOs into value-added bioproducts. Many of the selected publications deal with the development of bioactive molecules, including biosurfactants, with application in pharmaceuticals, food, cosmetics, and bioremediation. Bioconversion processes mainly featured engineered Yarrowia lipolytica and Escherichia coli strains, even if additional microorganisms were also employed. In the same way, different chemical processes have been thoroughly studied. A smaller segment of research is directed to the production of feed supplements and soaps. Regulatory constraints limit further development in feed supplements due to potential contaminants, while soap production needs further stability studies. The present systematic review shows promising outcomes in the valorisation of WCOs through the development of value-added molecules and products. Despite the wide range of applications, these findings identify that the scalability and economic sustainability of the selected processes require further investigation. This study seeks to summarize the current state of the art and identify potential gaps to advance the industrialization of WCOs valorisation.
Collapse
Affiliation(s)
- Antonio Caporusso
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy
| | - Matteo Radice
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy.
| | - Antonino Biundo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy; REWOW srl, Via G. Matarrese 10, Bari 70124, Italy
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy; CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Via C. Ulpiani, 27, Bari 70126, Italy
| | - Isabella Pisano
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy; CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Via C. Ulpiani, 27, Bari 70126, Italy.
| |
Collapse
|
4
|
Dong T, Zhou X, Hou ZJ, Shu Y, Yao M, Liu ZH, Cheng JS, Xiao W, Wang Y. Multiple Strategies Enhance 7-Dehydrocholesterol Production from Kitchen Waste by Engineered Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:693-705. [PMID: 39699994 DOI: 10.1021/acs.jafc.4c09552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
7-Dehydrocholesterol (7-DHC) is an important precursor of vitamin D3. The microbial synthesis of 7-DHC has attracted substantial attention. In this study, multiple strategies were developed to create a sustainable green route for enhancing 7-DHC yield from kitchen waste by engineered Yarrowia lipolytica. Y. lipolytica strains were engineered and combined with various Δ24-dehydrocholesterol reductases. Overexpressing all the genes in the mevalonate pathway improved the precursor pool, increasing the 7-DHC titer from 21.8 to 145.6 mg/L. Additionally, optimizing medium components using the response surface method significantly raised the 7-DHC titer to 391.0 mg/L after shake flask cultivation. The engineered strain yielded a record 7-DHC titer of 3.5 g/L in a 5-L bioreactor when kitchen waste was used as a carbon source. Overall, these results demonstrate that engineered Y. lipolytica efficiently synthesizes 7-DHC from waste lipid feedstock, offering a promising route for its bioproduction.
Collapse
Affiliation(s)
- Tianyu Dong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Xiao Zhou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yujie Shu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Science, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Ying Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Chen Y, Su L, Liu Q, Zhang G, Chen H, Wang Q, Jia K, Dai Z. Triune Engineering Approach for (+)-valencene Overproduction in Yarrowia lipolytica. Biotechnol J 2025; 20:e202400669. [PMID: 39817828 DOI: 10.1002/biot.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene. The strain Yarrowia lipolytica YL238, possessing a stronger capacity for (+)-valencene synthesis, was selected and utilized as the chassis for further modifications. By fine-tuning the mevalonate and squalene synthesis pathways we achieved a remarkable 13.2-fold increase in (+)-valencene titer compared to the original strain. Following directed evolution was employed to screen for efficient (+)-valencene synthase, which further enhanced (+)-valencene production by 138%. Consequently, the engineered strain overproduced 813 mg/L of (+)-valencene in shake flasks, marking the highest titer reported in microbials to date. Furthermore, in fed-batch fermentation, this engineered strain showed the capacity to produce 3.3 g/L of (+)-valencene. This study offers a successful model for the application of the "strain-pathway-enzyme" triune strategy in the metabolic engineering of Y. lipolytica, and these methodologies could be broadly utilized for the synthesis of other natural terpenes.
Collapse
Affiliation(s)
- Ying Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Liqiu Su
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qi Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ge Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hongyang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Kaizhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
6
|
Liu SC, Xu L, Sun Y, Yuan L, Xu H, Song X, Sun L. Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. BIODESIGN RESEARCH 2024; 6:0051. [PMID: 39534575 PMCID: PMC11555184 DOI: 10.34133/bdr.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenes are natural secondary metabolites with isoprene as the basic structural unit; they are widely found in nature and have potential applications as advanced fuels, pharmaceutical ingredients, and agricultural chemicals. However, traditional methods are inefficient for obtaining terpenes because of complex processes, low yields, and environmental unfriendliness. The unconventional oleaginous yeast Yarrowia lipolytica, with a clear genetic background and complete gene editing tools, has attracted increasing attention for terpenoid synthesis. Here, we review the synthetic biology tools for Y. lipolytica, including promoters, terminators, selection markers, and autonomously replicating sequences. The progress and emerging trends in the metabolic engineering of Y. lipolytica for terpenoid synthesis are further summarized. Finally, potential future research directions are envisioned.
Collapse
Affiliation(s)
- Shun-Cheng Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Longxing Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuejia Sun
- School of Nursing and Rehabilitation,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Lijie Yuan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Hong Xu
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaoming Song
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- School of Life Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Liangdan Sun
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China
- School of Public Health,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| |
Collapse
|
7
|
Muñoz-Fernández G, Montero-Bullón JF, Martínez JL, Buey RM, Jiménez A. Ashbya gossypii as a versatile platform to produce sabinene from agro-industrial wastes. Fungal Biol Biotechnol 2024; 11:16. [PMID: 39472989 PMCID: PMC11520522 DOI: 10.1186/s40694-024-00186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Ashbya gossypii is a filamentous fungus widely utilized for industrial riboflavin production and has a great potential as a microbial chassis for synthesizing other valuable metabolites such as folates, biolipids, and limonene. Engineered strains of A. gossypii can effectively use various waste streams, including xylose-rich feedstocks. Notably, A. gossypii has been identified as a proficient biocatalyst for producing limonene from xylose-rich sources. This study aims to investigate the capability of engineered A. gossypii strains to produce various plant monoterpenes using agro-industrial waste as carbon sources. RESULTS We overexpressed heterologous terpene synthases to produce acyclic, monocyclic, and bicyclic monoterpenes in two genetic backgrounds of A. gossypii. These backgrounds included an NPP synthase orthogonal pathway and a mutant erg20F95W allele with reduced FPP synthase activity. Our findings demonstrate that A. gossypii can synthesize linalool, limonene, pinene, and sabinene, with terpene synthases showing differential substrate selectivity for NPP or GPP precursors. Additionally, co-overexpression of endogenous HMG1 and ERG12 with heterologous NPP synthase and terpene synthases significantly increased sabinene yields from xylose-containing media. Using mixed formulations of corn-cob lignocellulosic hydrolysates and either sugarcane or beet molasses, we achieved limonene and sabinene productions of 383 mg/L and 684.5 mg/L, respectively, the latter representing a significant improvement compared to other organisms in flask culture mode. CONCLUSIONS Engineered A. gossypii strains serve as a suitable platform for assessing plant terpene synthase functionality and substrate selectivity in vivo, which are crucial to understand monoterpene bioproduction. The NPP synthase pathway markedly enhances limonene and sabinene production in A. gossypii, achieving levels comparable to those of other industrial microbial producers. Furthermore, these engineered strains offer a novel approach for producing monoterpenes through the valorization of agro-industrial wastes.
Collapse
Affiliation(s)
- Gloria Muñoz-Fernández
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800, Kgs. Lyngby, Denmark
| | - Javier-Fernando Montero-Bullón
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Luis Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800, Kgs. Lyngby, Denmark
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
8
|
Park YK, Sellés Vidal L, Bell D, Zabret J, Soldat M, Kavšček M, Ledesma-Amaro R. Efficient synthesis of limonene production in Yarrowia lipolytica by combinatorial engineering strategies. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:94. [PMID: 38961416 PMCID: PMC11223395 DOI: 10.1186/s13068-024-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Limonene has a variety of applications in the foods, cosmetics, pharmaceuticals, biomaterials, and biofuels industries. In order to meet the growing demand for sustainable production of limonene at industry scale, it is essential to find an alternative production system to traditional plant extraction. A promising and eco-friendly alternative is the use of microbes as cell factories for the synthesis of limonene. RESULTS In this study, the oleaginous yeast Yarrowia lipolytica has been engineered to produce D- and L-limonene. Four target genes, l- or d-LS (limonene synthase), HMG (HMG-CoA reductase), ERG20 (geranyl diphosphate synthase), and NDPS1 (neryl diphosphate) were expressed individually or fused together to find the optimal combination for higher limonene production. The strain expressing HMGR and the fusion protein ERG20-LS was the best limonene producer and, therefore, selected for further improvement. By increasing the expression of target genes and optimizing initial OD, 29.4 mg/L of L-limonene and 24.8 mg/L of D-limonene were obtained. We also studied whether peroxisomal compartmentalization of the synthesis pathway was beneficial for limonene production. The introduction of D-LS and ERG20 within the peroxisome improved limonene titers over cytosolic expression. Then, the entire MVA pathway was targeted to the peroxisome to improve precursor supply, which increased D-limonene production to 47.8 mg/L. Finally, through the optimization of fermentation conditions, D-limonene production titer reached 69.3 mg/L. CONCLUSIONS In this work, Y. lipolytica was successfully engineered to produce limonene. Our results showed that higher production of limonene was achieved when the synthesis pathway was targeted to the peroxisome, which indicates that this organelle can favor the bioproduction of terpenes in yeasts. This study opens new avenues for the efficient synthesis of valuable monoterpenes in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lara Sellés Vidal
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - David Bell
- SynbiCITE Innovation and Knowledge Centre, Imperial College London, London, SW7 2AZ, UK
| | - Jure Zabret
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Mladen Soldat
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Martin Kavšček
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| |
Collapse
|
9
|
Lu Z, Wang Y, Li Z, Zhang Y, He S, Zhang Z, Leong S, Wong A, Zhang CY, Yu A. Combining Metabolic Engineering and Lipid Droplet Storage Engineering for Improved α-Bisabolene Production in Yarrowia Lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463315 DOI: 10.1021/acs.jafc.3c02472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Bisabolene is a bioactive sesquiterpene with a wide range of applications in food, cosmetics, medicine, and aviation fuels. Microbial production offers a green, efficient, and sustainable alternative. In this study, we focused on improving the titers of α-bisabolene in Yarrowia lipolytica by applying two strategies, (i) optimizing the metabolic flux of α-bisabolene biosynthetic pathway and (ii) sequestering α-bisabolene in lipid droplet, thus alleviating its inherent toxicity to host cells. We showed that overexpression of DGA1 and OLE1 to increase lipid content and unsaturated fatty acid levels was essential for boosting the α-bisabolene synthesis when supplemented with auxiliary carbon sources. The final engineered strain Po1gαB10 produced 1954.3 mg/L α-bisabolene from the waste cooking oil under shake flask fermentation, which was 96-fold higher than the control strain Po1gαB0. At the time of writing, our study represents the highest reported α-bisabolene titer in the engineered Y. lipolytica cell factory. This work describes novel strategies to improve the bioproduction of α-bisabolene that potentially may be applicable for other high-value terpene products.
Collapse
Affiliation(s)
- Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yaping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Zhuo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yahui Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Sicheng He
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Ziyuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Susanna Leong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
10
|
Zhang TL, Yu HW, Ye LD. Metabolic Engineering of Yarrowia lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth Biol 2023; 12:639-656. [PMID: 36867718 DOI: 10.1021/acssynbio.2c00569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are a diverse group of compounds with isoprene units as basic building blocks. They are widely used in the food, feed, pharmaceutical, and cosmetic industries due to their diverse biological functions such as antioxidant, anticancer, and immune enhancement. With an increase in understanding the biosynthetic pathways of terpenoids and advances in synthetic biology techniques, microbial cell factories have been built for the heterologous production of terpenoids, with the oleaginous yeast Yarrowia lipolytica emerging as an outstanding chassis. In this paper, recent progress in the development of Y. lipolytica cell factories for terpenoid production with a focus on the advances in novel synbio tools and metabolic engineering strategies toward enhanced terpenoid biosynthesis is reviewed.
Collapse
Affiliation(s)
- Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Hong-Wei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| | - Li-Dan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| |
Collapse
|
11
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
12
|
Arnesen JA, Borodina I. Engineering of Yarrowia lipolytica for terpenoid production. Metab Eng Commun 2022; 15:e00213. [PMID: 36387772 PMCID: PMC9663531 DOI: 10.1016/j.mec.2022.e00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast Yarrowia lipolytica demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing Y. lipolytica terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Chen S, Lu Y, Wang W, Hu Y, Wang J, Tang S, Lin CSK, Yang X. Efficient production of the β-ionone aroma compound from organic waste hydrolysates using an engineered Yarrowia lipolytica strain. Front Microbiol 2022; 13:960558. [PMID: 36212878 PMCID: PMC9532697 DOI: 10.3389/fmicb.2022.960558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study demonstrates the feasibility of establishing a natural compound supply chain in a biorefinery. The process starts with the biological or chemical hydrolysis of food and agricultural waste into simple and fermentative sugars, followed by their fermentation into more complex molecules. The yeast strain, Yarrowia lipolytica, was modified by introducing high membrane affinity variants of the carotenoid cleavage dioxygenase enzyme, PhCCD1, to increase the production of the aroma compound, β-ionone. The initial hydrolysis process converted food waste or sugarcane bagasse into nutrient-rich hydrolysates containing 78.4 g/L glucose and 8.3 g/L fructose, or 34.7 g/L glucose and 20.1 g/L xylose, respectively. During the next step, engineered Y. lipolytica strains were used to produce β-ionone from these feedstocks. The yeast strain YLBI3120, carrying a modified PhCCD1 gene was able to produce 4 g/L of β-ionone with a productivity of 13.9 mg/L/h from food waste hydrolysate. This is the highest yield reported for the fermentation of this compound to date. The integrated process described in this study could be scaled up to achieve economical large-scale conversion of inedible food and agricultural waste into valuable aroma compounds for a wide range of potential applications.
Collapse
Affiliation(s)
- Shuyi Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanping Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Technology Research Center, Wuliangye Yibin Company Limited, Yibin, Sichuan, China
- Postdoctoral Research Workstation, Sichuan Yibin Wuliangye Group Company Limited, Yibin, Sichuan, China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Yunzi Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Kong J, Miao L, Lu Z, Wang S, Zhao B, Zhang C, Xiao D, Teo D, Leong SSJ, Wong A, Yu A. Enhanced production of amyrin in Yarrowia lipolytica using a combinatorial protein and metabolic engineering approach. Microb Cell Fact 2022; 21:186. [PMID: 36085205 PMCID: PMC9463779 DOI: 10.1186/s12934-022-01915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyrin is an important triterpenoid and precursor to a wide range of cosmetic, pharmaceutical and nutraceutical products. In this study, we metabolically engineered the oleaginous yeast, Yarrowia lipolytica to produce α- and β-amyrin on simple sugar and waste cooking oil. RESULTS We first validated the in vivo enzymatic activity of a multi-functional amyrin synthase (CrMAS) from Catharanthus roseus, by expressing its codon-optimized gene in Y. lipolytica and assayed for amyrins. To increase yield, prevailing genes in the mevalonate pathway, namely HMG1, ERG20, ERG9 and ERG1, were overexpressed singly and in combination to direct flux towards amyrin biosynthesis. By means of a semi-rational protein engineering approach, we augmented the catalytic activity of CrMAS and attained ~ 10-folds higher production level on glucose. When applied together, protein engineering with enhanced precursor supplies resulted in more than 20-folds increase in total amyrins. We also investigated the effects of different fermentation conditions in flask cultures, including temperature, volumetric oxygen mass transfer coefficient and carbon source types. The optimized fermentation condition attained titers of at least 100 mg/L α-amyrin and 20 mg/L β-amyrin. CONCLUSIONS The design workflow demonstrated herein is simple and remarkably effective in amplifying triterpenoid biosynthesis in the yeast Y. lipolytica.
Collapse
Affiliation(s)
- Jing Kong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Lin Miao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Desmond Teo
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Susanna Su Jan Leong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore.
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
15
|
Combined effect of phosphorus, magnesium, yeast extract on lipid productivity of Yarrowia lipolytica grown with molasses. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Rong L, Miao L, Wang S, Wang Y, Liu S, Lu Z, Zhao B, Zhang C, Xiao D, Pushpanathan K, Wong A, Yu A. Engineering Yarrowia lipolytica to Produce Itaconic Acid From Waste Cooking Oil. Front Bioeng Biotechnol 2022; 10:888869. [PMID: 35547171 PMCID: PMC9083544 DOI: 10.3389/fbioe.2022.888869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Itaconic acid (IA) is a high-value organic acid with a plethora of industrial applications. In this study, we seek to develop a microbial cell factory that could utilize waste cooking oil (WCO) as raw material for circular and cost-effective production of the abovementioned biochemical. Specifically, we expressed cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus in either the cytosol or peroxisome of Yarrowia lipolytica and assayed for production of IA on WCO. To further improve production yield, the 10 genes involved in the production pathway of acetyl-CoA, an intermediate metabolite necessary for the synthesis of cis-aconitic acid, were individually overexpressed and investigated for their impact on IA production. To minimize off-target flux channeling, we had also knocked out genes related to competing pathways in the peroxisome. Impressively, IA titer up to 54.55 g/L was achieved in our engineered Y. lipolytica in a 5 L bioreactor using WCO as the sole carbon source.
Collapse
Affiliation(s)
- Lanxin Rong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yaping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shiqi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Krithi Pushpanathan
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Dover, Singapore
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Dover, Singapore
- *Correspondence: Adison Wong, ; Aiqun Yu,
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Adison Wong, ; Aiqun Yu,
| |
Collapse
|