1
|
Itoh T, Kamada K, Nokami T, Ikawa T, Yagi K, Ikegami S, Inoue R, DeYoung AD, Kim HJ. On the Moisture Absorption Capability of Ionic Liquids. J Phys Chem B 2024; 128:6134-6150. [PMID: 38874477 PMCID: PMC11215776 DOI: 10.1021/acs.jpcb.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Due to their many attractive physicochemical properties, ionic liquids (ILs) have received extensive attention with numerous applications proposed in various fields of science and technology. Despite this, the molecular origins of many of their properties, such as the moisture absorption capability, are still not well understood. For insight into this, we systematically synthesized 24 types of ILs by the combination of the dimethyl phosphate anion with various types of alkyl group-substituted cyclic cations─imidazolium, pyrazolium, 1,2,3-triazolium, and 1,2,4-triazolium cations─and performed a detailed analysis of the dehumidification properties of these ILs and their aqueous solutions. It was found that these IL systems have a high dehumidification capability (DC). Among the monocationic ILs, the best performance was obtained with 1-cyclohexylmethyl-4-methyl-1,2,4-triazolium dimethyl phosphate, whose DC (per mol) value is 14 times higher than that of popular solid desiccants like CaCl2 and silica gel. Dicationic ILs, such as 1,1'-(propane-1,3-diyl)bis(4-methyl-1,2,4-triazolium) bis(dimethyl phosphate), showed an even better moisture absorption, with a DC (per mol) value about 20 times higher than that of CaCl2. Small- and wide-angle X-ray scattering measurements of eight types of 1,2,4-triazolium dimethyl phosphate ILs were performed and revealed that the majority of these ILs form nanostructures. Such nanostructures, which vary with the identity of the IL and the water content, fall into three main categories: bicontinuous microemulsions, hexagonal cylinders, and micelle-like structures. Water in the solutions exists primarily in polar regions in the nanostructures; these spaces function as water pockets at relatively low water concentrations. Since the structure and stability of the aggregated forms of the ILs are mainly governed by the interactions of nonpolar groups, the alkyl side chains of the cations play an important role in the DC and temperature-dependent equilibrium water vapor pressure of the IL solutions. Our experimental findings and molecular dynamics simulation results shed light on the moisture absorption mechanism of the IL aqueous solutions from a molecular perspective.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Toyota
Physical and Chemical Research Institute, 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kentaro Kamada
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Toshiki Nokami
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Taiji Ikawa
- Toyota
Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kenichi Yagi
- Toyota
Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Shuji Ikegami
- Technology
and Innovation Center, Daikin Industries,
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Ryo Inoue
- Technology
and Innovation Center, Daikin Industries,
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Andrew D. DeYoung
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hyung J. Kim
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Pan Z, Zeng B, Shen L, Teng J, Lai T, Zhao L, Yu G, Lin H. Innovative treatment of industrial effluents through combining ferric iron and attapulgite application. CHEMOSPHERE 2024; 358:142132. [PMID: 38670505 DOI: 10.1016/j.chemosphere.2024.142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The escalation of industrial activities has escalated the production of pharmaceutical and dyeing effluents, raising significant environmental issues. In this investigation, a hybrid approach of Fenton-like reactions and adsorption was used for deep treatment of these effluents, focusing on effects of variables like hydrogen peroxide concentration, catalyst type, pH, reaction duration, temperature, and adsorbent quantity on treatment effectiveness, and the efficacy of acid-modified attapulgite (AMATP) and ferric iron (Fe(III))-loaded AMATP (Fe(III)-AMATP) was examined. Optimal operational conditions were determined, and the possibility of reusing the catalysts was explored. Employing Fe3O4 as a heterogeneous catalyst and AMATP for adsorption, CODCr was reduced by 78.38-79.14%, total nitrogen by 71.53-77.43%, and phosphorus by 97.74-98.10% in pharmaceutical effluents. Similarly, for dyeing effluents, Fe(III)-AMATP achieved 79.87-80.94% CODCr, 68.59-70.93% total nitrogen, and 79.31-83.33% phosphorus reduction. Regeneration experiments revealed that Fe3O4 maintained 59.48% efficiency over three cycles, and Fe(III)-AMATP maintained 62.47% efficiency over four cycles. This work offers an economical, hybrid approach for effective pharmaceutical and dyeing effluent treatment, with broad application potential.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Tongli Lai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Leihong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Yao C, Wu H, Li X, Chen Q, Zhang W, Yu G, Liu H, Miao Y, Wu W. Molecular insights into dicationic versus monocationic ionic liquids as a high hydrophobic alternative for the separation of phenol from waters. ENVIRONMENTAL RESEARCH 2024; 248:118420. [PMID: 38316384 DOI: 10.1016/j.envres.2024.118420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The hydrophobic nature of an extractant is particularly critical in the treatment of wastewater. Considering that dicationic ionic liquids (DILs) are likely to be more hydrophobic, a comparative study of the separation of phenol from waters using [NTf2]- based monocationic ionic liquids (MILs) and DILs is carried out both from experimental and theoretical analysis perspectives. Experimental results revealed that DILs exhibited superior extraction ability compared to MILs, with extraction efficiencies of 93.7% and 97.4% using [BMIM][NTf2] and [C6(MIM)2][NTf2]2 as extractants, respectively. The microscopic examination through theoretical calculations elucidated the higher hydrophobicity and extraction efficiency of DILs over MILs. The results indicated that the DIL showed stronger hydrophobicity than the MIL because the hydrogen bond strength between the DIL and water was lower than that of the MIL. Although the hydrogen bond strength between the DIL and phenol was lower than that of the MIL, the stronger van der Waals forces existed between DIL and phenol, so DIL was more efficient in extracting phenol. In addition, the experimental parameters were optimized to provide basic data for application, such as mass ratio of ILs to water, extraction time and temperature, pH, and initial phenol content. Finally, the DILs were recovered using rotary evaporation apparatus, and the results demonstrated that DILs had good recovery and reuse performance. In brief, this work could provide an effective method for the treatment of phenol-containing wastewater. And the revelation of molecular mechanism is expected to positively impact the design of high-performance task-specific ILs.
Collapse
Affiliation(s)
- Congfei Yao
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Haisong Wu
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyu Li
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qiuyu Chen
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wanxiang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Hongqi Liu
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Weize Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Song Z, Chen J, Cheng J, Chen G, Qi Z. Computer-Aided Molecular Design of Ionic Liquids as Advanced Process Media: A Review from Fundamentals to Applications. Chem Rev 2024; 124:248-317. [PMID: 38108629 DOI: 10.1021/acs.chemrev.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The unique physicochemical properties, flexible structural tunability, and giant chemical space of ionic liquids (ILs) provide them a great opportunity to match different target properties to work as advanced process media. The crux of the matter is how to efficiently and reliably tailor suitable ILs toward a specific application. In this regard, the computer-aided molecular design (CAMD) approach has been widely adapted to cover this family of high-profile chemicals, that is, to perform computer-aided IL design (CAILD). This review discusses the past developments that have contributed to the state-of-the-art of CAILD and provides a perspective about how future works could pursue the acceleration of the practical application of ILs. In a broad context of CAILD, key aspects related to the forward structure-property modeling and reverse molecular design of ILs are overviewed. For the former forward task, diverse IL molecular representations, modeling algorithms, as well as representative models on physical properties, thermodynamic properties, among others of ILs are introduced. For the latter reverse task, representative works formulating different molecular design scenarios are summarized. Beyond the substantial progress made, some future perspectives to move CAILD a step forward are finally provided.
Collapse
Affiliation(s)
- Zhen Song
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiahui Chen
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Cheng
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guzhong Chen
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhiwen Qi
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Abstract
Condensable gases are the sum of condensable and volatile steam or organic compounds, including water vapor, which are discharged into the atmosphere in gaseous form at atmospheric pressure and room temperature. Condensable toxic and harmful gases emitted from petrochemical, chemical, packaging and printing, industrial coatings, and mineral mining activities seriously pollute the atmospheric environment and endanger human health. Meanwhile, these gases are necessary chemical raw materials; therefore, developing green and efficient capture technology is significant for efficiently utilizing condensed gas resources. To overcome the problems of pollution and corrosion existing in traditional organic solvent and alkali absorption methods, ionic liquids (ILs), known as "liquid molecular sieves", have received unprecedented attention thanks to their excellent separation and regeneration performance and have gradually become green solvents used by scholars to replace traditional absorbents. This work reviews the research progress of ILs in separating condensate gas. As the basis of chemical engineering, this review first provides a detailed discussion of the origin of predictive molecular thermodynamics and its broad application in theory and industry. Afterward, this review focuses on the latest research results of ILs in the capture of several important typical condensable gases, including water vapor, aromatic VOCs (i.e., BTEX), chlorinated VOC, fluorinated refrigerant gas, low-carbon alcohols, ketones, ethers, ester vapors, etc. Using pure IL, mixed ILs, and IL + organic solvent mixtures as absorbents also briefly expanded the related reports of porous materials loaded with an IL as adsorbents. Finally, future development and research directions in this exciting field are remarked.
Collapse
Affiliation(s)
- Guoxuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|