1
|
Boon-yasidhi P, Karnsakul W. Non-Invasive Biomarkers and Breath Tests for Diagnosis and Monitoring of Chronic Liver Diseases. Diagnostics (Basel) 2024; 15:68. [PMID: 39795596 PMCID: PMC11720471 DOI: 10.3390/diagnostics15010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Chronic liver disease (CLD) presents a significant global health burden, demanding effective tools for diagnosis and monitoring. Traditionally, liver biopsy has been the gold standard for evaluating liver fibrosis and other chronic liver conditions. However, biopsy's invasiveness, associated risks, and sampling variability indicate the need for reliable, noninvasive alternatives. This review examines the utility of noninvasive tests (NITs) in assessing liver disease severity, progression, and therapeutic response in patients with CLD. Result: Key modalities discussed include serum biomarker panels (e.g., FIB-4, APRI, ELF), imaging techniques like transient elastography, and magnetic resonance elastography, each offering unique benefits in fibrosis staging. Emerging biomarkers such as extracellular vesicles and circulating microRNAs show promise in early detection and personalized monitoring. Comparative studies indicate that while no single NIT matches biopsy precision, combinations of these modalities improve diagnostic accuracy and patient outcomes by reducing unnecessary biopsies. Moreover, NITs are instrumental in monitoring dynamic changes in liver health, allowing for more responsive and patient-centered care. Conclusions: Challenges remain, including standardization across tests, cost considerations, and the need for larger, diverse population studies to validate findings. Despite these limitations, NITs are increasingly integrated into clinical practice, fostering a paradigm shift toward noninvasive, accessible liver disease management. Continued advancements in NITs are essential for improved patient outcomes and will likely shape the future standard of care for CLD.
Collapse
Affiliation(s)
- Pasawat Boon-yasidhi
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wikrom Karnsakul
- Pediatric Liver Center, Department of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
2
|
Mehta H, Dunn W. Determining Prognosis of ALD and Alcohol-associated Hepatitis. J Clin Exp Hepatol 2023; 13:479-488. [PMID: 37250869 PMCID: PMC10213842 DOI: 10.1016/j.jceh.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol-associated hepatitis has a poor prognosis in terms of short-term mortality and often presents with symptoms, such as jaundice, acute renal failure, and ascites. There are many prognostic models that have been developed to predict short-term and long-term mortality in these patients. Current prognostic models can be divided into static scores, which are measured at admission, and dynamic models, which measure baseline and after a certain amount of time. The efficacy of these models in predicting short-term mortality is disputed. Numerous studies across the world have compared prognostic models, such as the Maddrey's discriminant function, the model for end-stage liver disease score, model for end-stage liver disease score-Na, Glasgow alcohol-associated hepatitis score, and the age-bilirubin-international normalized ratio-creatinine (ABIC) score, to each other to determine which score is more useful for a particular context. There are also prognostic markers such as liver biopsy, breath biomarkers, and acute kidney injury that are able to predict mortality. The accuracy of these scores is a key to determining when treatment with corticosteroids is futile since there is an increased risk of infection in those treated with it. Furthermore, although these scores are helpful in predicting short-term mortality, the only factor that is able to predict long-term mortality in patients with alcohol-related liver disease is abstinence. Numerous studies have proven that even though corticosteroids provide a treatment for alcohol-associated hepatitis, it is a temporary one, at best. The purpose of this paper is to compare the historical models to current ones in their ability to predict mortality in patients with alcohol-related liver disease by analyzing multiple studies that have examined these prognostic markers. This paper also isolates the knowledge gaps in the ability to delineate which patients would benefit from corticosteroids and patients who would not and provides potential models for the future that could narrow this gap.
Collapse
Affiliation(s)
- Heer Mehta
- University of Missouri–Kansas City School of Medicine, USA
| | | |
Collapse
|
3
|
Nazir N, Abbas S, Nasir H, Hussain I. Electrochemical sensing of limonene using thiol capped gold nanoparticles and its detection in the real breath sample of a cirrhotic patient. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Liver Impairment-The Potential Application of Volatile Organic Compounds in Hepatology. Metabolites 2021; 11:metabo11090618. [PMID: 34564434 PMCID: PMC8471934 DOI: 10.3390/metabo11090618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Liver diseases are currently diagnosed through liver biopsy. Its invasiveness, costs, and relatively low diagnostic accuracy require new techniques to be sought. Analysis of volatile organic compounds (VOCs) in human bio-matrices has received a lot of attention. It is known that a musty odour characterises liver impairment, resulting in the elucidation of volatile chemicals in the breath and other body fluids such as urine and stool, which may serve as biomarkers of a disease. Aims: This study aims to review all the studies found in the literature regarding VOCs in liver diseases, and to summarise all the identified compounds that could be used as diagnostic or prognostic biomarkers. The literature search was conducted on ScienceDirect and PubMed, and each eligible publication was qualitatively assessed by two independent evaluators using the SANRA critical appraisal tool. Results: In the search, 58 publications were found, and 28 were kept for inclusion: 23 were about VOCs in the breath, one in the bile, three in urine, and one in faeces. Each publication was graded from zero to ten. A graphical summary of the metabolic pathways showcasing the known liver disease-related VOCs and suggestions on how VOC analysis on liver impairment could be applied in clinical practice are given.
Collapse
|
5
|
Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly. Nutrients 2019; 11:nu11092193. [PMID: 31547291 PMCID: PMC6770243 DOI: 10.3390/nu11092193] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is accompanied with increased frailty and comorbidities, which is potentially associated with microbiome perturbations. Dietary fibers could contribute to healthy aging by beneficially impacting gut microbiota and metabolite profiles. We aimed to compare young adults with elderly and investigate the effect of pectin supplementation on fecal microbiota composition, short chain fatty acids (SCFAs), and exhaled volatile organic compounds (VOCs) while using a randomized, double-blind, placebo-controlled parallel design. Fifty-two young adults and 48 elderly consumed 15 g/day sugar beet pectin or maltodextrin for four weeks. Fecal and exhaled breath samples were collected before and after the intervention period. Fecal samples were used for microbiota profiling by 16S rRNA gene amplicon sequencing, and for analysis of SCFAs by gas chromatography (GC). Breath was used for VOC analysis by GC-tof-MS. Young adults and elderly showed similar fecal SCFA and exhaled VOC profiles. Additionally, fecal microbiota profiles were similar, with five genera significantly different in relative abundance. Pectin supplementation did not significantly alter fecal microbiota, SCFA or exhaled VOC profiles in elderly or young adults. In conclusion, aside from some minor differences in microbial composition, healthy elderly and young adults showed comparable fecal microbiota composition and activity, which were not altered by pectin supplementation.
Collapse
|
6
|
O'Hara ME, Fernández Del Río R, Holt A, Pemberton P, Shah T, Whitehouse T, Mayhew CA. Limonene in exhaled breath is elevated in hepatic encephalopathy. J Breath Res 2016; 10:046010. [PMID: 27869108 PMCID: PMC5500822 DOI: 10.1088/1752-7155/10/4/046010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breath samples were taken from 31 patients with liver disease and 30 controls in a clinical setting and proton transfer reaction quadrupole mass spectrometry (PTR-Quad-MS) used to measure the concentration of volatile organic compounds (VOCs). All patients had cirrhosis of various etiologies, with some also suffering from hepatocellular cancer (HCC) and/or hepatic encephalopathy (HE). Breath limonene was higher in patients with No-HCC than with HCC, median (lower/upper quartile) 14.2 (7.2/60.1) versus 3.6 (2.0/13.7) and 1.5 (1.1/2.3) nmol mol-1 in controls. This may reflect disease severity, as those with No-HCC had significantly higher UKELD (United Kingdom model for End stage Liver Disease) scores. Patients with HE were categorized as having HE symptoms presently, having a history but no current symptoms and having neither history nor current symptoms. Breath limonene in these groups was median (lower/upper quartile) 46.0 (14.0/103), 4.2 (2.6/6.4) and 7.2 (2.0/19.1) nmol mol-1, respectively. The higher concentration of limonene in those with current symptoms of HE than with a history but no current symptoms cannot be explained by disease severity as their UKELD scores were not significantly different. Longitudinal data from two patients admitted to hospital with HE show a large intra-subject variation in breath limonene, median (range) 18 (10-44) and 42 (32-58) nmol mol-1.
Collapse
Affiliation(s)
- M E O'Hara
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
7
|
Baranska A, Mujagic Z, Smolinska A, Dallinga JW, Jonkers DMAE, Tigchelaar EF, Dekens J, Zhernakova A, Ludwig T, Masclee AAM, Wijmenga C, van Schooten FJ. Volatile organic compounds in breath as markers for irritable bowel syndrome: a metabolomic approach. Aliment Pharmacol Ther 2016; 44:45-56. [PMID: 27136066 DOI: 10.1111/apt.13654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 12/30/2015] [Accepted: 04/17/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The diagnosis of irritable bowel syndrome (IBS) is challenging because of its heterogeneity and multifactorial pathophysiology. No reliable biomarkers of IBS have been identified so far. AIMS In a case-control study, using a novel application of breath analysis to distinguish IBS patients from healthy controls based on the analysis of volatile organic compounds (VOCs). Subsequently, the diagnostic VOC-biomarker set was correlated with self-reported gastrointestinal (GI) symptoms of subjects of the Maastricht IBS clinical cohort and of a general population cohort, LifeLines DEEP. METHODS Breath samples were collected from 170 IBS patients and 153 healthy controls in the clinical cohort and from 1307 participants in general population cohort. Multivariate statistics were used to identify the most discriminatory set of VOCs in the clinical cohort, and to find associations between VOCs and GI symptoms in both cohorts. RESULTS A set of 16 VOCs correctly predicted 89.4% of the IBS patients and 73.3% of the healthy controls (AUC = 0.83). The VOC-biomarker set correlated moderately with a set of GI symptoms in the clinical (r = 0.55, P = 0.0003) and general population cohorts (r = 0.54, P = 0.0004). A Kruskal-Wallis test showed no influence from possible confounding factors in distinguishing IBS patients from healthy controls. CONCLUSIONS A set of 16 breath-based biomarkers that distinguishes IBS patients from healthy controls was identified. The VOC-biomarker set correlated significantly with GI symptoms in two independent cohorts. We demonstrate the potential use of breath analysis in the diagnosis and monitoring of IBS, and a possible application of VOC analyses in a general population cohort.
Collapse
Affiliation(s)
- A Baranska
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Z Mujagic
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - A Smolinska
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - J W Dallinga
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - D M A E Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - E F Tigchelaar
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - J Dekens
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - A Zhernakova
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - T Ludwig
- Department of Developmental Physiology and Nutrition, Danone Nutricia Research, Utrecht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - C Wijmenga
- Top Institute Food and Nutrition, Wageningen, The Netherlands.,Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - F J van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
8
|
A profile of volatile organic compounds in exhaled air as a potential non-invasive biomarker for liver cirrhosis. Sci Rep 2016; 6:19903. [PMID: 26822454 PMCID: PMC4731784 DOI: 10.1038/srep19903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Early diagnosis of liver cirrhosis may prevent progression and development of complications. Liver biopsy is the current standard, but is invasive and associated with morbidity. We aimed to identify exhaled volatiles within a heterogeneous group of chronic liver disease (CLD) patients that discriminates those with compensated cirrhosis (CIR) from those without cirrhosis, and compare this with serological markers. Breath samples were collected from 87 CLD and 34 CIR patients. Volatiles in exhaled air were measured by gas chromatography mass spectrometry. Discriminant Analysis was performed to identify the optimal panel of serological markers and VOCs for classifying our patients using a random training set of 27 CIR and 27 CLD patients. Two randomly selected independent internal validation sets and permutation test were used to validate the model. 5 serological markers were found to distinguish CIR and CLD patients with a sensitivity of 0.71 and specificity of 0.84. A set of 11 volatiles discriminated CIR from CLD patients with sensitivity of 0.83 and specificity of 0.87. Combining both did not further improve accuracy. A specific exhaled volatile profile can predict the presence of compensated cirrhosis among CLD patients with a higher accuracy than serological markers and can aid in reducing liver biopsies.
Collapse
|
9
|
Fernández Del Río R, O'Hara ME, Holt A, Pemberton P, Shah T, Whitehouse T, Mayhew CA. Volatile Biomarkers in Breath Associated With Liver Cirrhosis - Comparisons of Pre- and Post-liver Transplant Breath Samples. EBioMedicine 2015; 2:1243-50. [PMID: 26501124 PMCID: PMC4588000 DOI: 10.1016/j.ebiom.2015.07.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022] Open
Abstract
Background The burden of liver disease in the UK has risen dramatically and there is a need for improved diagnostics. Aims To determine which breath volatiles are associated with the cirrhotic liver and hence diagnostically useful. Methods A two-stage biomarker discovery procedure was used. Alveolar breath samples of 31 patients with cirrhosis and 30 healthy controls were mass spectrometrically analysed and compared (stage 1). 12 of these patients had their breath analysed after liver transplant (stage 2). Five patients were followed longitudinally as in-patients in the post-transplant period. Results Seven volatiles were elevated in the breath of patients versus controls. Of these, five showed statistically significant decrease post-transplant: limonene, methanol, 2-pentanone, 2-butanone and carbon disulfide. On an individual basis limonene has the best diagnostic capability (the area under a receiver operating characteristic curve (AUROC) is 0.91), but this is improved by combining methanol, 2-pentanone and limonene (AUROC curve 0.95). Following transplant, limonene shows wash-out characteristics. Conclusions Limonene, methanol and 2-pentanone are breath markers for a cirrhotic liver. This study raises the potential to investigate these volatiles as markers for early-stage liver disease. By monitoring the wash-out of limonene following transplant, graft liver function can be non-invasively assessed. Breath volatiles were compared for cirrhotic patients and controls and pre- and post-liver transplant. Three volatiles (limonene, methanol, 2-pentanone) have been found to have excellent diagnostic capabilities. Limonene shows washout characteristics following transplant supporting a hypothesis that it accumulates in fat.
There are numerous previous studies investigating breath volatiles in patients with liver disease but with conflicting results. It is impossible to tell which volatiles from previous studies may be false discoveries, and which are actually associated with the disease. We measured breath samples in patients and controls and in patients after transplant. Methanol, 2-pentanone and limonene show differences not only between patients and controls but also in cases pre- and post-transplant and have excellent diagnostic capabilities. We show evidence that limonene accumulates in the body, probably because the cirrhotic liver fails to metabolise dietary limonene.
Collapse
Key Words
- AID, autoimmune liver disease
- ALD, alcoholic liver disease
- AUROC, area under receiver operator curve
- BMI, body mass index
- Breath analysis
- CD, cryptogenic disease
- Cirrhosis
- Diagnosis limonene
- GC, gas chromatography
- HBV, hepatitis B virus
- HCC, hepatocellular cancer
- HCV, hepatitis C virus
- ITU, intensive treatment unit
- LQ, lower quartile
- Liver transplant
- MS, mass spectrometry
- OPU, out-patient clinic
- PBC, primary biliary cirrhosis
- PSC, primary sclerosing cholangitis
- PTR-MS
- PTR-MS, proton transfer reaction mass spectrometry
- ROC, Receiver operating characteristics
- TAC, transplant assessment clinic
- TE, transient elastography
- UKELD, United Kingdom model for end-stage liver disease
- UQ, upper quartile
- VMR, volume mixing ratio
- VOC, volatile organic compounds
- Volatile organic compounds
- ppbv, parts per billion by volume
- ppmv, parts per million by volume
Collapse
Affiliation(s)
- R Fernández Del Río
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
| | - M E O'Hara
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
| | - A Holt
- Department of Hepatology, University Hospital Birmingham NHS Trust, Birmingham B15 2TH, UK
| | - P Pemberton
- Critical Care and Anaesthesia, University Hospital Birmingham NHS Trust, Birmingham B15 2TH, UK
| | - T Shah
- Department of Hepatology, University Hospital Birmingham NHS Trust, Birmingham B15 2TH, UK
| | - T Whitehouse
- Critical Care and Anaesthesia, University Hospital Birmingham NHS Trust, Birmingham B15 2TH, UK
| | - C A Mayhew
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|