1
|
Dai L, Liu Z, Guo C, Fan H, Zhang C, Huang J, Zhang X, Zhao S, Wang H, Zhang T. Proteomic insights into metabolic dysfunction-associated steatotic disease: Identifying therapeutic targets and assessing on-target side effects. Life Sci 2025; 373:123665. [PMID: 40287056 DOI: 10.1016/j.lfs.2025.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising sharply, yet treatment options remain inadequate. To uncover new therapeutic targets for MASLD, we conducted a comprehensive proteome-wide Mendelian randomization (MR) and phenome-wide association study (PheWAS). MATERIALS AND METHODS Discovery MR utilized protein quantitative trait loci (pQTL) data on 4907 plasma protein levels from 35,559 individuals, alongside genome-wide association study (GWAS) on MASLD from the Million Veteran Program (68,725 cases / 95,482 controls). Validation comprised five pairwise combinations of these discovery datasets with three additional datasets: pQTL data for 2923 proteins from the UK Biobank, and liver biopsy-confirmed MASLD GWAS (1483 cases/17,781 controls) and MRI-liver fat GWAS (31,377 subjects) (excluding discovery pair). Candidate proteins underwent druggability assessment and on-target side effect evaluation via PheWAS. KEY FINDINGS We identified 26 proteins associated with MASLD after Bonferroni correction (P < 1.16 × 10-5), with 19 of them showing no significant reverse association. Interleukin-6 (IL-6), alpha-1-antitrypsin (α1-antitrypsin), 5-hydroxytryptamine receptor 7 (5-HT7R), ephrin-B1 (EFNB1), and protein MENT (CA056) were replicated. Notably, IL-6 (OR = 2.02; 95 % CI 1.54-2.64), 5-HT7R (OR = 2.73; 95 % CI 1.96-3.80), and EFNB1 (OR = 1.82; 95 % CI 1.59-2.08) were positively associated with MASLD risk, whereas α1-antitrypsin (OR = 0.84; 95 % CI 0.78-0.90) and CA056 (OR = 0.90; 95 % CI 0.86-0.94) appeared protective. Among these, IL-6, 5-HT7R, and α1-antitrypsin were druggable. PheWAS identified potential cardiovascular side effects for 5-HT7R and α1-antitrypsin. SIGNIFICANCE The integrative study identified several plasma proteins associated with MASLD. IL-6, α1-antitrypsin, 5-HT7R, EFNB1 and CA056 deserve further investigation as potential drug targets for MASLD.
Collapse
Affiliation(s)
- Luojia Dai
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhenqiu Liu
- Human Phenome Institute, Research and Innovation Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chengnan Guo
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Chengjun Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiayi Huang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shuzhen Zhao
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Haili Wang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Schneider CV, Decraecker M, Beaufrère A, Payancé A, Coilly A, Schneider KM, Bioulac P, Blanc JF, Le Bail B, Amintas S, Bouchecareilh M. Alpha-1 antitrypsin deficiency and primary liver cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189290. [PMID: 39999944 DOI: 10.1016/j.bbcan.2025.189290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Primary liver cancers (PLCs) remain a major challenge to global health and an escalating threat to human life, with a growing incidence worldwide. PLCs are composed of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and mixed HCC-CCA, accounting for 85 %, 10 %, and 5 % of cases, respectively. Among the numerous identified risk factors associated with liver cancers, Alpha 1-AntiTrypsin Deficiency (AATD) genetic disease emerges as an intriguing one. AATD-related liver disease may lead to chronic hepatitis, cirrhosis, and PLCs in adulthood. Although our knowledge about the natural history of AATD-liver disease has improved recently, liver cancers associated with AATD remain poorly understood and explored, while this specific population is at a 20 to 50 times higher risk of developing PLC. Thus, we review here current knowledge about AATD-associated PLCs, describing the impact of AATD genotypes on their occurrence. We also discuss emerging hypotheses regarding the AATD PiZZ genotype-related hepatic carcinogenesis process. Finally, we perform an updated analysis of the United Kingdom Biobank database that highlights and confirms AATD PiZZ genotype as an important HCC risk factor.
Collapse
Affiliation(s)
- Carolin Victoria Schneider
- Department of Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie Decraecker
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Oncology Unit, Hôpital Haut Lévêque, CIC 1401, Bordeaux University Hospital, 33604 Pessac, France
| | - Aurélie Beaufrère
- AP-HP Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Université Paris Cité, Beaujon Hospital, Clichy, France
| | - Audrey Payancé
- AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, Hôpital Paul Brousse, UMR-1193, APHP, Université Paris Saclay, Villejuif, France
| | - Kai Markus Schneider
- Departement of Medicine I, Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany; Else Kroener Fresenius Center for Digital Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Paulette Bioulac
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France
| | - Jean-Frédéric Blanc
- Oncology Unit, Hôpital Haut Lévêque, CIC 1401, Bordeaux University Hospital, 33604 Pessac, France
| | - Brigitte Le Bail
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Pathology Department, Pellegrin University Hospital, CHU Bordeaux, France; French National and Bordeaux Local Liver Tumor Bank, France
| | - Samuel Amintas
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Tumor Biology and Tumor Bank Laboratory, CHU Bordeaux, Pessac, France.
| | | |
Collapse
|
3
|
Xiang S, Yang L, He Y, Ding F, Qiao S, Su Z, Chen Z, Lu A, Li F. Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer. Cells 2025; 14:88. [PMID: 39851516 PMCID: PMC11763672 DOI: 10.3390/cells14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Alpha-1 antitrypsin (AAT) is a key serine protease inhibitor for regulating proteases such as neutrophil elastase. AAT restrains the pulmonary matrix from enzymatic degradation, and a deficiency in AAT leads to inflammatory tissue damage in the lungs, resulting in chronic obstructive pulmonary disease. Due to the crucial biological function of AAT, the emerging research interest in this protein has shifted to its role in cancer-associated inflammation and the dynamics of the tumor microenvironment. However, the lack of comprehensive reviews in this field hinders our understanding of AAT as an essential immune modulator with great potential in cancer immunotherapy. Therefore, in this review, we have elucidated the pivotal roles of AAT in inflammation and the tumor microenvironment, including the structure and molecular properties of AAT, its molecular functions in the regulation of the inflammatory response and tumor microenvironment, and its clinical implications in cancer including its diagnosis, prognosis, and therapeutic intervention. This review seeks to bridge the gap in the understanding of AAT between inflammatory diseases and cancer, and to foster deeper investigations into its translational potential in cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Siyu Xiang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yun He
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Feng Ding
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zonghua Su
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zheng Chen
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
4
|
Loomba R, Clark G, Teckman J, Ajmera V, Behling C, Brantly M, Brenner D, D'Armiento J, Fried MW, Iyer JS, Mandorfer M, Rockey DC, Tincopa M, Vuppalanchi R, Younossi Z, Krag A, Turner AM, Strnad P. Review article: New developments in biomarkers and clinical drug development in alpha-1 antitrypsin deficiency-related liver disease. Aliment Pharmacol Ther 2024; 59:1183-1195. [PMID: 38516814 DOI: 10.1111/apt.17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Alpha-1 antitrypsin liver disease (AATLD) occurs in a subset of patients with alpha-1 antitrypsin deficiency. Risk factors for disease progression and specific pathophysiologic features are not well known and validated non-invasive assessments for disease severity are lacking. Currently, there are no approved treatments for AATLD. AIMS To outline existing understanding of AATLD and to identify knowledge gaps critical to improving clinical trial design and development of new treatments. METHODS This report was developed following a multi-stakeholder forum organised by the Alpha-1 Antitrypsin Deficiency Related Liver Disease Expert Panel in which experts presented an overview of the available literature on this topic. RESULTS AATLD results from a 'gain of toxic function' and primarily manifests in those with the homozygous Pi*ZZ genotype. Accumulation of misfolded 'Z' AAT protein in liver cells triggers intracellular hepatocyte injury which may ultimately lead to hepatic fibrosis. Male gender, age over 50 years, persistently elevated liver tests, concomitant hepatitis B or C virus infection, and metabolic syndrome, including obesity and type 2 diabetes mellitus, are known risk factors for adult AATLD. While the gold standard for assessing AATLD disease activity is liver histology, less invasive measures with low intra- and inter-observer variability are needed. Measurement of liver stiffness shows promise; validated thresholds for staging AATLD are in development. Such advances will help patients by enabling risk stratification and personalised surveillance, along with streamlining the development process for novel therapies. CONCLUSIONS This inaugural forum generated a list of recommendations to address unmet needs in the field of AATLD.
Collapse
Affiliation(s)
- Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Ginger Clark
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jeff Teckman
- Pediatrics and Biochemistry, St. Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Veeral Ajmera
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Cynthia Behling
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
- Pacific Rim Pathology Lab, San Diego, California, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - David Brenner
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jeanine D'Armiento
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | | | | | - Mattias Mandorfer
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Don C Rockey
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Monica Tincopa
- University of California San Diego, San Diego, California, USA
| | - Raj Vuppalanchi
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | - Pavel Strnad
- University Hospital RWTH Aachen, Healthcare Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|