1
|
Lakavathu M, Zhao Y. Artificial amidase with modifiable active sites and designable substrate selectivity for aryl amide hydrolysis. Chem Commun (Camb) 2025. [PMID: 40433681 DOI: 10.1039/d5cc01868d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Hydrolases are used by cells to process key biomolecules including peptides and esters. Previous synthetic mimics of proteases generally only hydrolyze highly active ester derivatives. We report a synthetic catalyst with an acid/base dyad in its active site that hydrolyzes aryl amides under near physiological conditions. The aspartic protease mimic achieves substrate selectivity by its imprinted active site, which is tunable through different template molecules used during molecular imprinting. It can be designed to maintain or override the intrinsic activities of aryl amides in a predictable manner.
Collapse
Affiliation(s)
- Mohan Lakavathu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| |
Collapse
|
2
|
Chen T, Xu Z. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis. Adv Colloid Interface Sci 2025; 337:103387. [PMID: 39729822 DOI: 10.1016/j.cis.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts. Six types of materials, including oxide nano/microparticle, mesoporous silica nanoparticle (MSN), polymer nanomaterial, reticular material, zeolite, and carbon-based nanomaterial, are widely used as supports for the immobilization of catalytic species. We summarize and discuss the synthesis and modification of supports and the positive effects of microenvironments on catalytic properties such as metal-support interaction, molecular recognition, pseudo-solvent effect, regulating mass transfer, steric effect, etc. These design principles and engineering strategies allow access to a better understanding of structure-property relationships and advance the development of more efficient catalytic processes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Bui TT, Zhao Y. Molecularly Imprinted Nanozymes for Selective Hydrolysis of Aromatic Carbonates Under Mild Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:169. [PMID: 39940145 PMCID: PMC11820003 DOI: 10.3390/nano15030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Aliphatic polycarbonate (PC) can be readily hydrolyzed by lipase, but bisphenol A-derived PC (i.e., BPA-PC) lacks enzyme catalysts for their efficient hydrolysis due to the high hydrophobicity and rigidity of its polymer backbone. This study aims to develop an artificial nanozyme for the selective hydrolysis of small-molecule aromatic carbonates as model substrates for BPA-PC. The catalyst is prepared through molecular imprinting of cross-linkable micelles in a one-pot reaction using a thiourea template and a zinc-containing functional monomer. The resulting water-soluble nanoparticle resembles a hydrolytic metalloenzyme to bind the appropriately shaped aromatic carbonate substrate in the active site, with the nearby zinc acting as a cofactor to activate a water molecule for the nucleophilic attack on the carbonate. Catalytic hydrolysis is observed at room temperature and pH 7, with a rate acceleration of 1 × 106 for diphenyl carbonate.
Collapse
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA
| |
Collapse
|
4
|
Lakavathu M, Zhao Y. Direct Synthesis of Artificial Esterase through Molecular Imprinting Using a Substrate-Mimicking Acylthiourea Template. J Org Chem 2024; 89:15336-15340. [PMID: 39382034 DOI: 10.1021/acs.joc.4c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Most reported artificial esterases hydrolyze only activated esters. We here report a one-pot synthesis of artificial esterases via molecular imprinting. An acylthiourea template hydrogen bonds with 4-vinylbenzoic acid and coordinates to a polymerizable zinc complex inside a cross-linkable surfactant micelle. Double cross-linking of the micelle yields a polymeric nanoparticle catalyst that mimics a metalloenzyme to activate a water molecule for nucleophilic attack on the bound ester. The catalyst hydrolyzes both activated and unactivated esters under mild conditions with selectivity.
Collapse
Affiliation(s)
- Mohan Lakavathu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
5
|
Hernández-Fernández J, Tiempos-Flores N, Ordóñez M, Rivas-Galindo V, López-Cortina S, García-Alvarez KG, Hernández-Fernández E. Microwave-Assisted Hydrolysis of Ethyl Azolylacetates and Cinnamates with K 2CO 3: Synthesis of Potassium Carboxylates. ACS OMEGA 2024; 9:40783-40789. [PMID: 39371973 PMCID: PMC11447747 DOI: 10.1021/acsomega.4c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
In this study, the hydrolysis of ethyl azolylacetates and ethyl cinnamates using K2CO3/ethanol under microwave irradiation was developed. For this purpose, ethyl azolylacetates were first synthesized by nucleophilic substitution between the corresponding azole and ethyl bromoacetate under sonication at 50 °C for 3 h, yielding derivatives with 10-92% chemical yields, while ethyl cinnamates were obtained by a microwave-assisted Horner-Wadsworth-Emmons (HWE) reaction of triethyl phosphonoacetate with a variety of aryl aldehydes at 140 °C for 20 min, yielding derivatives with moderate to high yields (67-98%). Initially, the optimization of the hydrolysis reaction was performed using ethyl pyrazolylacetate as a model starting material while varying the temperature, time, and base equivalents; the best results were achieved by carrying out the reaction at 180 °C for 20 min with 3.0 eq of K2CO3. This simple and greener method facilitated the synthesis of potassium carboxylates in moderate to high yields, 80-98% for azolyl derivatives and 73-98% for cinnamate derivatives. The structures of all potassium carboxylates were confirmed by FTIR, 1H, 13C NMR, and HRMS.
Collapse
Affiliation(s)
- Jorge Hernández-Fernández
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| | - Norma Tiempos-Flores
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| | - Mario Ordóñez
- Centro
de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, México
| | - Verónica
M. Rivas-Galindo
- Facultad
de Medicina, Universidad Autónoma
de Nuevo León, Fco. I. Madero s/n, Mitras Centro, Monterrey, Nuevo León 64460, México
| | - Susana López-Cortina
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| | - Katia Guadalupe García-Alvarez
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| | - Eugenio Hernández-Fernández
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| |
Collapse
|
6
|
Ghosh A, Zhao Y. Nanoparticles that Distinguish Chemical and Supramolecular Contexts of Lysine for Single-Site Functionalization of Protein. NANO LETTERS 2024; 24:8763-8769. [PMID: 38976835 DOI: 10.1021/acs.nanolett.4c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lysine is one of the most abundant residues on the surface of proteins and its site-selective functionalization is extremely challenging. The existing methods of functionalization rely on differential reactivities of lysine on a protein, making it impossible to label less reactive lysines selectively. We here report polymeric nanoparticles that mimic enzymes involved in the posttranslational modifications of proteins that distinguish the chemical and supramolecular contexts of a lysine and deliver the labeling reagent precisely to its ε amino group. The nanoparticles are prepared through molecular imprinting of cross-linkable surfactant micelles, plus an in situ, on-micelle derivatization of the peptide template prior to the imprinting. The procedures encode the polymeric nanoparticles with all the supramolecular information needed for sequence identification and precise labeling, allowing single-site functionalization of a predetermined lysine on the target protein in a mixture.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
7
|
Nardi AN, Olivieri A, D'Abramo M, Amadei A. A Theoretical-Computational Study of Phosphodiester Bond Cleavage Kinetics as a Function of the Temperature. Chemphyschem 2024; 25:e202300952. [PMID: 38372713 DOI: 10.1002/cphc.202300952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
The hydrolysis of the phosphodiester bond is an important chemical reaction involved in several biological processes. Here, we study the cleavage of this bond by means of a theoretical-computational method in a model system, the dineopentyl phosphate. By such an approach, we reconstructed the kinetics and related thermodynamics of this chemical reaction along an isochore. In particular, we evaluated the kinetic constants of all the reaction steps within a wide range of temperatures, mostly corresponding to conditions where no experimental measures are available due to the extremely slow kinetics. Our results, in good agreement with the experimental data, show the robustness of our theoretical-computational methodology which can be easily extended to more complex systems.
Collapse
Affiliation(s)
| | - Alessio Olivieri
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Andrea Amadei
- Department of Technological and Chemical Sciences, Tor Vergata University of Rome, Italy
| |
Collapse
|
8
|
Bahrami F, Zhao Y. Tuning Active Site Electron Density for Enhanced Molecular Recognition and Catalysis. J Org Chem 2024; 89:5148-5152. [PMID: 38514256 DOI: 10.1021/acs.joc.3c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Enzymes have an extraordinary ability to utilize aromatic interactions for molecular recognition and catalysis. We here report molecularly imprinted nanoparticle receptors. The aromatic "wall" material in the imprinted binding site is used to enhance the molecular recognition of aromatic guests that have similar charges, shapes, and sizes but differ in π-electron density. Additionally, aromatic interactions are employed to activate an electron-rich aryl leaving group on a glycoside, mimicking the nucleoside hydrolase of the parasite Trypanosoma vivax.
Collapse
Affiliation(s)
- Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
9
|
Bahrami F, Zhao Y. Rational Design and Synthesis of an Artificial Enzyme for S N2 Reactions through Micellar Imprinting. Org Lett 2024; 26:73-77. [PMID: 38135651 PMCID: PMC11097202 DOI: 10.1021/acs.orglett.3c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The rational design of catalysts with enzyme-like properties is an elusive goal of chemists despite tremendous interest. Molecular imprinting inside surfactant micelles, followed by postmodification, creates a tailored active site in a water-soluble polymeric "artificial enzyme" for the benzylation of 4-nitrophenol. The reaction happens under neutral conditions with excellent substrate selectivity. Similar to many enzymes, electrostatics play vital roles in catalysis and can be tuned through different bases introduced into the active site.
Collapse
Affiliation(s)
- Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
10
|
Chen T, Lu Y, Xiong X, Qiu M, Peng Y, Xu Z. Hydrolytic nanozymes: Preparation, properties, and applications. Adv Colloid Interface Sci 2024; 323:103072. [PMID: 38159448 DOI: 10.1016/j.cis.2023.103072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Hydrolytic nanozymes, as promising alternatives to hydrolytic enzymes, can efficiently catalyze the hydrolysis reactions and overcome the operating window limitations of natural enzymes. Moreover, they exhibit several merits such as relatively low cost, easier recovery and reuse, improved operating stability, and adjustable catalytic properties. Consequently, they have found relevance in practical applications such as organic synthesis, chemical weapon degradation, and biosensing. In this review, we highlight recent works addressing the broad topic of the development of hydrolytic nanozymes. We review the preparation, properties, and applications of six types of hydrolytic nanozymes, including AuNP-based nanozymes, polymeric nanozymes, surfactant assemblies, peptide assemblies, metal and metal oxide nanoparticles, and MOFs. Last, we discuss the remaining challenges and future directions. This review will stimulate the development and application of hydrolytic nanozymes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yizhuo Lu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaorong Xiong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Sudagar A, Shao S, Żołek T, Maciejewska D, Asztemborska M, Cieplak M, Sharma PS, D’Souza F, Kutner W, Noworyta KR. Improving the Selectivity of the C-C Coupled Product Electrosynthesis by Using Molecularly Imprinted Polymer─An Enhanced Route from Phenol to Biphenol. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49595-49610. [PMID: 37823554 PMCID: PMC10614056 DOI: 10.1021/acsami.3c09696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
We developed a procedure for selective 2,4-dimethylphenol, DMPh, direct electro-oxidation to 3,3',5,5'-tetramethyl-2,2'-biphenol, TMBh, a C-C coupled product. For that, we used an electrode coated with a product-selective molecularly imprinted polymer (MIP). The procedure is reasonably selective toward TMBh without requiring harmful additives or elevated temperatures. The TMBh product itself was used as a template for imprinting. We followed the template interaction with various functional monomers (FMs) using density functional theory (DFT) simulations to select optimal FM. On this basis, we used a prepolymerization complex of TMBh with carboxyl-containing FM at a 1:2 TMBh-to-FM molar ratio for MIP fabrication. The template-FM interaction was also followed by using different spectroscopic techniques. Then, we prepared the MIP on the electrode surface in the form of a thin film by the potentiodynamic electropolymerization of the chosen complex and extracted the template. Afterward, we characterized the fabricated films by using electrochemistry, FTIR spectroscopy, and AFM, elucidating their composition and morphology. Ultimately, the DMPh electro-oxidation was performed on the MIP film-coated electrode to obtain the desired TMBh product. The electrosynthesis selectivity was much higher at the electrode coated with MIP film in comparison with the reference nonimprinted polymer (NIP) film-coated or bare electrodes, reaching 39% under optimized conditions. MIP film thickness and electrosynthesis parameters significantly affected the electrosynthesis yield and selectivity. At thicker films, the yield was higher at the expense of selectivity, while the electrosynthesis potential increase enhanced the TMBh product yield. Computer simulations of the imprinted cavity interaction with the substrate molecule demonstrated that the MIP cavity promoted direct coupling of the substrate to form the desired TMBh product.
Collapse
Affiliation(s)
- Alcina
Johnson Sudagar
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Shuai Shao
- Department
of Chemistry, University of North Texas, 1155, Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Teresa Żołek
- Department
of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Dorota Maciejewska
- Department
of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Asztemborska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francis D’Souza
- Department
of Chemistry, University of North Texas, 1155, Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Włodzimierz Kutner
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| | - Krzysztof R. Noworyta
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Bahrami F, Zhao Y. Carbonic anhydrase mimics with rationally designed active sites for fine-tuned catalytic activity and selectivity in ester hydrolysis. Catal Sci Technol 2023; 13:5702-5709. [PMID: 38013842 PMCID: PMC10544069 DOI: 10.1039/d3cy00704a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 11/29/2023]
Abstract
Numerous hydrolytic enzymes utilize zinc as a cofactor for catalysis. We here report water-soluble polymeric nanoparticles with zinc ions in active sites and a nearby base as a mimic of carbonic anhydrase (CA). Their pKa of 6.3-6.4 for zinc-bound water is lower than the 6.8-7.3 value for natural enzymes, which allows the catalyst to hydrolyze nonactivated alkyl esters under neutral conditions-a long sought-after goal for artificial esterases. The size and shape of the active site can be rationally tuned through a template used in molecular imprinting. Subtle structural changes in the template, including shifting an ethyl group by one C-N bond and removal of a methylene group, correlate directly with catalytic activity. A catalyst can be made to be highly specific or have broad substrate specificity through modular synthesis of templates.
Collapse
Affiliation(s)
- Foroogh Bahrami
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA +1 515 294 0105 +1 515 294 5845
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA +1 515 294 0105 +1 515 294 5845
| |
Collapse
|
13
|
Bose I, Zhao Y. Supramolecular Regulation of Catalytic Activity in Molecularly Responsive Catalysts. J Org Chem 2023; 88:12792-12796. [PMID: 37584689 PMCID: PMC11095615 DOI: 10.1021/acs.joc.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Some enzymes switch between an open form and a closed form. We report a molecularly tuned catalyst that accommodates a substrate and a signal molecule simultaneously. Binding of the signal molecule helps direct the reactive group of the substrate to the catalytic group and enhances the catalytic activity. Subtle structural changes in either the substrate or the signal molecule are readily detected. The switching mechanism also allows the catalytic reaction to be turned on and off reversibly by specific molecular signals.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| |
Collapse
|
14
|
Bose I, Bahrami F, Zhao Y. Artificial Esterase for Cooperative Catalysis of Ester Hydrolysis at pH 7. MATERIALS TODAY. CHEMISTRY 2023; 30:101576. [PMID: 37997572 PMCID: PMC10665026 DOI: 10.1016/j.mtchem.2023.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Ester is one of the most prevalent functional groups in natural and man-made products. Natural esterases hydrolyze nonactivated alkyl esters readily but artificial esterases generally use highly activated p-nitrophenyl esters as substrates. We report synthetic esterases constructed through molecular imprinting in cross-linked micelles. The water-soluble nanoparticle catalysts contain a thiouronium cation to mimic the oxyanion hole and a nearby base to assist the hydrolysis. Whereas this catalytic motif readily affords large rate acceleration for the hydrolysis of p-nitrophenyl hexanoate, nonactivated cyclopentyl hexanoate demands catalytic groups that can generate a strong nucleophile (hydroxide) in the active site. The hydroxide is stabilized by the protonated base when the external solution is at pH 7, enabling the hydrolysis of activated and nonactivated esters under neutral conditions.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | - Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA
| |
Collapse
|
15
|
Arifuzzaman MD, Zhao Y. Selective Hydrolysis of Nonactivated Aryl Esters at pH 7 through Cooperative Catalysis. J Org Chem 2023; 88:3282-3287. [PMID: 36795622 PMCID: PMC10183976 DOI: 10.1021/acs.joc.2c02570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Most reported artificial esterases only hydrolyze highly activated substrates. We here report synthetic catalysts that hydrolyze nonactivated aryl esters at pH 7, via cooperative action of a thiourea group that mimics the oxyanion hole of a serine protease and a nearby nucleophilic/basic pyridyl group. The molecularly imprinted active site distinguishes subtle structural changes in the substrate, including elongation of the acyl chain by two carbons or shift of a remote methyl group by one carbon.
Collapse
Affiliation(s)
- M D Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
16
|
Liu N, Li SB, Zheng YZ, Xu SY, Shen JS. Minimalistic Artificial Catalysts with Esterase-Like Activity from Multivalent Nanofibers Formed by the Self-Assembly of Dipeptides. ACS OMEGA 2023; 8:2491-2500. [PMID: 36687071 PMCID: PMC9851029 DOI: 10.1021/acsomega.2c06972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Imitating and incorporating the multiple key structural features observed in natural enzymes into a minimalistic molecule to develop an artificial catalyst with outstanding catalytic efficiency is an attractive topic for chemists. Herein, we designed and synthesized one class of minimalistic dipeptide molecules containing a terminal -SH group and a terminal His-Phe dipeptide head linked by a hydrophobic alkyl chain with different lengths, marked as HS-C n+1-His-Phe (n = 4, 7, 11, 15, and 17; n + 1 represents the carbon atom number of the alkyl chain). The His (-imidazole), Phe (-CO2 -) moieties, the terminal -SH group, and a long hydrophobic alkyl chain were found to have important contributions to achieve high binding ability leading to outstanding absolute catalytic efficiency (k cat/K M) toward the hydrolysis reactions of carboxylic ester substrates.
Collapse
Affiliation(s)
- Ning Liu
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuai-Bing Li
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yan-Zhen Zheng
- College
of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Su-Ying Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiang-Shan Shen
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
17
|
Zhang N, Wu C. Tailoring Protein-Polymer Conjugates as Efficient Artificial Enzymes for Aqueous Asymmetric Aldol Reactions. ACS Synth Biol 2022; 11:3797-3804. [PMID: 36343337 DOI: 10.1021/acssynbio.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Artificial enzymes are becoming a powerful toolbox for selective organic syntheses. Herein, we first propose an advanced artificial enzyme by polymeric modularity as an efficient aldolase mimic for aqueous asymmetric aldol reactions. Based on an in-depth understanding of the aldolase reaction mechanism and our previous work, we demonstrate the modular design of protein-polymer conjugates by co-incorporating l-proline and styrene onto a noncatalytic protein scaffold with a high degree of controllability. The tailored conjugates exhibited remarkable catalytic performance toward the aqueous asymmetric aldol reaction of p-nitrobenzaldehyde and cyclohexanone, achieving 94% conversion and excellent selectivity (95/5 diastereoselectivity, 98% enantiomeric excess). In addition, this artificial enzyme showed high tolerance against extreme conditions (e.g., wide pH range, high temperature) and could be reused for more than four times without significant loss of reactivity. Experiments have shown that the artificial enzyme displayed broad specificity for various aldehydes.
Collapse
Affiliation(s)
- Ningning Zhang
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.,Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
18
|
Zangiabadi M, Zhao Y. Synergistic Hydrolysis of Cellulose by a Blend of Cellulase-Mimicking Polymeric Nanoparticle Catalysts. J Am Chem Soc 2022; 144:17110-17119. [PMID: 36069714 PMCID: PMC10183977 DOI: 10.1021/jacs.2c06848] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-like catalysts by design have been a long sought-after goal of chemists but difficult to realize due to the challenges in the construction of multifunctionalized active sites with accurately positioned catalytic groups for complex substrates. Hydrolysis of cellulose is a key step in biomass utilization and requires multiple enzymes to work in concert to overcome the difficulty associated with hydrolyzing the recalcitrant substrate. We here report methods to construct synthetic versions of these enzymes through covalent molecular imprinting and strategic postmodification of the imprinted sites. The synthetic catalysts cleave a cellulose chain endolytically at multiple positions or exolytically from the nonreducing end by one or three glucose units at a time, all using the dicarboxylic acid motif found in natural cellulases. By mimicking the endocellulase, exocellulase, and β-glucosidase, the synthetic catalysts hydrolyze cellulose in a synergistic manner, with an activity at 90 °C in pH 6.5 buffer more than doubled that of Aspergillus niger cellulase at pH 5 and 37 °C and 44% of that of a commercial cellulase blend (from Novozyme). As robust cross-linked polymeric nanoparticles, the synthetic catalysts showed little changes in activity after preheating at 90 °C for 3 days and could be reused, maintaining 76% of activity after 10 reaction cycles.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|