1
|
Huang L, Lilley DMJ. Some general principles of riboswitch structure and interactions with small-molecule ligands. Q Rev Biophys 2025; 58:e13. [PMID: 40432402 DOI: 10.1017/s0033583525100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Riboswitches are RNA elements with a defined structure found in noncoding sections of genes that allow the direct control of gene expression by the binding of small molecules functionally related to the gene product. In most cases, this is a metabolite in the same (typically biosynthetic) pathway as an enzyme (or transporter) encoded by the gene that is controlled. The structures of many riboswitches have been determined and this provides a large database of RNA structure and ligand binding. In this review, we extract general principles of RNA structure and the manner or ligand binding from this resource.
Collapse
Affiliation(s)
- Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, https://ror.org/0064kty71Sun Yat-Sen University, Guangzhou510120, China
| | - David M J Lilley
- Molecular, Cellular and Developmental Biology Division, School of Life Sciences, https://ror.org/03h2bxq36University of Dundee, DundeeDD1 5EH, UK
| |
Collapse
|
2
|
Chaudhury SN, Jespersen NE, Hennelly SP, Sanbonmatsu KY. Regulatory helix plays a key role in genetic ON-OFF switching for the 2'-deoxyguanosine sensing mRNA element. J Biol Chem 2025:110282. [PMID: 40412519 DOI: 10.1016/j.jbc.2025.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 05/09/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025] Open
Abstract
Transcriptional riboswitches, noncoding mRNA elements that operate in cis to regulate gene expression, have a promising potential in medicine, synthetic biology and directed evolution. They bind to cellular metabolites or metal ions with high specificity, leading to conformational rearrangements that facilitate the activation or premature termination of transcription for downstream genes. This elegant mechanism for feedback regulation of metabolic pathways has been identified in prokaryotes and a few in eukaryotes. Our chemical probing of the 2'-deoxyguanosine (2'-dG)-sensing riboswitch demonstrates that the overall conformational state of the full-length riboswitch (dGsw-fl) is unresponsive to the 2'-dG. Although binding proceeds as expected, dGsw-fl exclusively populates an OFF state of transcriptional inhibition. We chemically probed the structure of a known dGsw transcriptional intermediate (dGsw-int) to evaluate the possibility of a cotranscriptional regulatory role. Interestingly, apo dGsw-int adopts an alternative conformation in which a stable anti-terminator helix is formed, leading to an ON state where transcription can proceed. In the presence of 2'-dG, this anti-terminator helix is destabilized to produce a conformation reminiscent of the full-length, OFF-state dGsw. Using a fluorescence quenching assay, we demonstrate that binding 2'-dG to early transcriptional intermediates can inhibit the formation of the anti-terminator helix, locking dGsw in an OFF state. These data suggest that metabolite sensing occurs during a brief window of time between the synthesis of two transcriptional intermediates. Our studies indicate that dGsw does not function as a binary ON-OFF switch, but instead fine-tunes the transcription of downstream genes during RNA synthesis using key intermediates.
Collapse
Affiliation(s)
- Susmit Narayan Chaudhury
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Nathan Edward Jespersen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Scott P Hennelly
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States; New Mexico Consortium, Los Alamos, NM 87544, United States.
| |
Collapse
|
3
|
Zhou Q, Zhang Z, Gao L, Li G, Zhang Y, Yang W, Zhao Y, Yang D, Wang MW, Luo Z, Xia X. Computation-Enabled Structure-Based Discovery of Potent Binders for Small-Molecule Aptamers. J Chem Theory Comput 2025; 21:3216-3230. [PMID: 40029701 DOI: 10.1021/acs.jctc.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Aptamers, functional nucleic acids recognized for their high target-binding affinity and specificity, have been extensively employed in biosensors, diagnostics, and therapeutics. Conventional screening methods apply evolutionary pressure to optimize affinity, while counter-selections are used to minimize off-target binding and improve specificity. However, aptamer specificity characterization remains limited to target analogs and experimental controls. A systematic exploration of the chemical space for aptamer-binding chemicals (targets) is crucial for uncovering aptamer versatility and enhancing target specificity in practical applications, a task beyond the scope of experimental approaches. To address this, we employed a high-throughput three-stage structure-based computational framework to identify potent binders for two model aptamers. Our findings revealed that the l-argininamide (L-Arm)-binding aptamer has a 31-fold higher affinity for the retromer chaperone R55 than for L-Arm itself, while guanethidine and ZINC10314005 exhibited comparable affinities to L-Arm. In another case, norfloxacin and difloxacin demonstrated over 10-fold greater affinity for the ochratoxin A (OTA)-binding aptamer OBA3 than OTA, introducing a fresh paradigm in aptamer-target interactions. Furthermore, pocket mutation studies highlighted the potential to tune aptamer specificity, significantly impacting the bindings of L-Arm or norfloxacin. These findings demonstrate the effectiveness of our computational framework in discovering potent aptamer binders, thereby expanding the understanding of aptamer-binding versatility and advancing nucleic acid-targeted drug discovery.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Zheng Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guanyi Li
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weili Yang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaxue Zhao
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
- The National Center for Drug Screening and State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Ming-Wei Wang
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Datta M, Liu J. A DNA Aptamer for 2-Aminopurine: Binding-Induced Fluorescence Quenching. Chem Asian J 2024; 19:e202400817. [PMID: 39251403 PMCID: PMC11613817 DOI: 10.1002/asia.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
2-Aminopurine (2AP) is a fluorescent analog of adenine, and its unique properties make it valuable in various biochemical and biotechnological applications. Its fluorescence property probes local dynamics in DNA and RNA because stacking with the surrounding bases quench its fluorescence. 2AP-labeled DNA or RNA sequences have been used for the detection of genetic mutations, viral RNA, or other nucleic acid-based markers associated with diseases like cancer and infectious diseases. In this study, we isolated aptamers for 2AP using the library immobilization capture-SELEX technique. A dominating aptamer family was isolated after 15 rounds of selection. The Kd values for the most abundant 2AP1 aptamer are 209 nM in a fluorescence assay and 72 nM in an isothermal titration calorimetry test. A 32 nM 2AP limit of detection was tested based on its intrinsic fluorescence change upon aptamer binding. Additionally, we conducted some mutation analysis. Furthermore, we tested the selectivity of this aptamer and discovered that it can bind adenine and adenosine with approximately 100-fold lower affinity than 2AP.
Collapse
Affiliation(s)
- Meheta Datta
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterloo, OntarioN2 L 3G1Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterloo, OntarioN2 L 3G1Canada
| |
Collapse
|
5
|
Jayasinghe O, Ritchey L, Breil T, Newman P, Yakhnin H, Babitzke P. NusG-dependent RNA polymerase pausing is a common feature of riboswitch regulatory mechanisms. Nucleic Acids Res 2024; 52:12945-12960. [PMID: 39494516 PMCID: PMC11602163 DOI: 10.1093/nar/gkae981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Transcription by RNA polymerase is punctuated by transient pausing events. Pausing provides time for RNA folding and binding of regulatory factors to the paused elongation complex. We previously identified 1600 NusG-dependent pauses throughout the Bacillus subtilis genome, with ∼20% localized to 5' leader regions, suggesting a regulatory role for these pauses. We examined pauses associated with known riboswitches to determine whether pausing is a common feature of these mechanisms. NusG-dependent pauses in the fmnP, tenA, mgtE, lysP and mtnK riboswitches were in strategic positions preceding the critical decision between the formation of alternative antiterminator or terminator structures, which is a critical feature of transcription attenuation mechanisms. In vitro transcription assays demonstrated that pausing increased the frequency of termination in the presence of the cognate ligand. NusG-dependent pausing also reduced the ligand concentration required for efficient termination. In vivo expression studies with transcriptional fusions confirmed that NusG-dependent pausing is a critical component of each riboswitch mechanism. Our results indicate that pausing enables cells to sense a broader range of ligand concentrations for fine-tuning riboswitch attenuation mechanisms.
Collapse
Affiliation(s)
- Oshadhi T Jayasinghe
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, 203 Althouse, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura E Ritchey
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, 203 Althouse, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, 260 Engineering and Science, University of Pittsburgh at Johnstown, Johnstown, PA 15904, USA
| | - Thomas Breil
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, 203 Althouse, Pennsylvania State University, University Park, PA 16802, USA
| | - Paxton Newman
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, 203 Althouse, Pennsylvania State University, University Park, PA 16802, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, 203 Althouse, Pennsylvania State University, University Park, PA 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, 203 Althouse, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Eschbach SH, Hien EDM, Ghosh T, Lamontagne AM, Lafontaine DA. The Escherichia coli ribB riboswitch senses flavin mononucleotide within a defined transcriptional window. RNA (NEW YORK, N.Y.) 2024; 30:1660-1673. [PMID: 39366707 PMCID: PMC11571811 DOI: 10.1261/rna.080074.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context. Here, we study the ligand-dependent cotranscriptional folding of the FMN-sensing ribB riboswitch of Escherichia coli Using RNase H assays to study nascent ribB riboswitch transcripts, DNA probes targeting the P1 and sequestering stems indicate that FMN binding leads to the protection of these regions from RNase H cleavage, consistent with the riboswitch inhibiting translation initiation when bound to FMN. Our results show that ligand sensing is strongly affected by the position of elongating RNA polymerase, which is defining an FMN-binding transcriptional window that is bordered in its 3' extremity by a transcriptional pause site. Also, using successively overlapping DNA probes targeting a subdomain of the riboswitch, our data suggest the presence of a previously unsuspected helical region involving the 3' strand of the P1 stem. Our results show that this helical region is conserved across bacterial species, thus suggesting that this predicted structure, the anti*-P1 stem, is involved in the FMN-free conformation of the ribB riboswitch. Overall, our study further demonstrates that intricate folding strategies may be used by riboswitches to perform metabolite sensing during the transcriptional process.
Collapse
Affiliation(s)
- Sébastien H Eschbach
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Elsa D M Hien
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Tithi Ghosh
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Anne-Marie Lamontagne
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| |
Collapse
|
7
|
Grondin JP, Geffroy M, Simoneau-Roy M, Chauvier A, Turcotte P, St-Pierre P, Dubé A, Moreau J, Massé E, Penedo JC, Lafontaine DA. Insights into the cotranscriptional and translational control mechanisms of the Escherichia coli tbpA thiamin pyrophosphate riboswitch. Commun Biol 2024; 7:1345. [PMID: 39420148 PMCID: PMC11487190 DOI: 10.1038/s42003-024-07008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Riboswitches regulate gene expression by modulating their structure upon metabolite binding. These RNA orchestrate several layers of regulation to achieve genetic control. Although Escherichia coli riboswitches modulate translation initiation, several cases have been reported where riboswitches also modulate mRNA levels. Here, we characterize the regulation mechanisms of the thiamin pyrophosphate (TPP) tbpA riboswitch in E. coli. Our results indicate that the tbpA riboswitch modulates both levels of translation and transcription and that TPP sensing is achieved more efficiently cotranscriptionally than post-transcriptionally. The preference for cotranscriptional binding is also observed when monitoring the TPP-dependent inhibition of translation initiation. Using single-molecule approaches, we observe that the aptamer domain freely fluctuates between two main structures involved in TPP recognition. Our results suggest that translation initiation is controlled through the ligand-dependent stabilization of the riboswitch structure. This study demonstrates that riboswitch cotranscriptional sensing is the primary determinant in controlling translation and mRNA levels.
Collapse
Affiliation(s)
- Jonathan P Grondin
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Mélanie Geffroy
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Delpharm Boucherville, Boucherville, QC, Canada
| | - Maxime Simoneau-Roy
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Cégep de Saint-Hyacinthe, Saint-Hyacinthe, QC, Canada
| | - Adrien Chauvier
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pierre Turcotte
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Unité de recherche clinique et épidémiologique, CIUSSS de l'Estrie, Sherbrooke, QC, Canada
| | - Patrick St-Pierre
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Audrey Dubé
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de médecine de famille et de médecine d'urgence, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Moreau
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. Andrews, St Andrews, UK
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
8
|
Ding E, Chaudhury SN, Prajapati JD, Onuchic JN, Sanbonmatsu KY. Magnesium ions mitigate metastable states in the regulatory landscape of mRNA elements. RNA (NEW YORK, N.Y.) 2024; 30:992-1010. [PMID: 38777381 PMCID: PMC11251524 DOI: 10.1261/rna.079767.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Residing in the 5' untranslated region of the mRNA, the 2'-deoxyguanosine (2'-dG) riboswitch mRNA element adopts an alternative structure upon binding of the 2'-dG molecule, which terminates transcription. RNA conformations are generally strongly affected by positively charged metal ions (especially Mg2+). We have quantitatively explored the combined effect of ligand (2'-dG) and Mg2+ binding on the energy landscape of the aptamer domain of the 2'-dG riboswitch with both explicit solvent all-atom molecular dynamics simulations (99 μsec aggregate sampling for the study) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments. We show that both ligand and Mg2+ are required for the stabilization of the aptamer domain; however, the two factors act with different modalities. The addition of Mg2+ remodels the energy landscape and reduces its frustration by the formation of additional contacts. In contrast, the binding of 2'-dG eliminates the metastable states by nucleating a compact core for the aptamer domain. Mg2+ ions and ligand binding are required to stabilize the least stable helix, P1 (which needs to unfold to activate the transcription platform), and the riboswitch core formed by the backbone of the P2 and P3 helices. Mg2+ and ligand also facilitate a more compact structure in the three-way junction region.
Collapse
Affiliation(s)
- Erdong Ding
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Susmit Narayan Chaudhury
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87544, USA
| |
Collapse
|
9
|
Hien EDM, Chauvier A, St-Pierre P, Lafontaine DA. Structural Characterization of the Cotranscriptional Folding of the Thiamin Pyrophosphate Sensing thiC Riboswitch in Escherichia coli. Biochemistry 2024; 63:1608-1620. [PMID: 38864595 DOI: 10.1021/acs.biochem.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Riboswitches are RNA-regulating elements that mostly rely on structural changes to modulate gene expression at various levels. Recent studies have revealed that riboswitches may control several regulatory mechanisms cotranscriptionally, i.e., during the transcription elongation of the riboswitch or early in the coding region of the regulated gene. Here, we study the structure of the nascent thiamin pyrophosphate (TPP)-sensing thiC riboswitch in Escherichia coli by using biochemical and enzymatic conventional probing approaches. Our chemical (in-line and lead probing) and enzymatic (nucleases S1, A, T1, and RNase H) probing data provide a comprehensive model of how TPP binding modulates the structure of the thiC riboswitch. Furthermore, by using transcriptional roadblocks along the riboswitch sequence, we find that a certain portion of nascent RNA is needed to sense TPP that coincides with the formation of the P5 stem loop. Together, our data suggest that conventional techniques may readily be used to study cotranscriptional folding of nascent RNAs.
Collapse
Affiliation(s)
- Elsa D M Hien
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Adrien Chauvier
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Patrick St-Pierre
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
10
|
Liang P, Lv B, Chen K, Li D. Sensitive aptasensing of ATP based on a PAM site-regulated CRISPR/Cas12a activation. Mikrochim Acta 2024; 191:386. [PMID: 38867016 DOI: 10.1007/s00604-024-06477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
The combination of CRISPR/Cas12a and functional DNA provides the possibility of constructing biosensors for detecting non-nucleic-acid targets. In the current study, the duplex protospacer adjacent motif (PAM) in the activator of CRISPR/Cas12a was used as a molecular switch, and a sensitive adenosine triphosphate (ATP) detection biosensor was constructed using an allosteric probe-conjugated PAM site formation in hybridization chain reaction (HCR) integrated with the CRISPR/Cas12a system (APF-CRISPR). In the absence of ATP, an aptamer-containing probe (AP) is in a stem-loop structure, which blocks the initiation of HCR. In the presence of ATP, the structure of AP is changed upon ATP binding, resulting in the release of the HCR trigger strand and the production of long duplex DNA with many PAM sites. Since the presence of a duplex PAM site is crucial for triggering the cleavage activity of CRISPR/Cas12a, the ATP-dependent formation of the PAM site in HCR products can initiate the FQ-reporter cleavage, allowing ATP quantification by measuring the fluorescent signals. By optimizing the sequence elements and detection conditions, the aptasensor demonstrated superior detection performance. The limit of detection (LOD) of the assay was estimated to be 1.16 nM, where the standard deviation of the blank was calculated based on six repeated measurements. The dynamic range of the detection was 25-750 nM, and the whole workflow of the assay was approximately 60 min. In addition, the reliability and practicability of the aptasensor were validated by comparing it with a commercially available chemiluminescence kit for ATP detection in serum. Due to its high sensitivity, specificity, and reliable performance, the APF-CRISPR holds great potential in bioanalytical studies for ATP detection. In addition, we have provided a proof-of-principle for constructing a CRISPR/Cas12a-based aptasensor, in which the PAM is utilized to regulate Cas12a cleavage activity.
Collapse
Affiliation(s)
- Pengda Liang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Bei Lv
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Ke Chen
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
11
|
Bastet L, Korepanov A, Jagodnik J, Grondin J, Lamontagne AM, Guillier M, Lafontaine D. Riboswitch and small RNAs modulate btuB translation initiation in Escherichia coli and trigger distinct mRNA regulatory mechanisms. Nucleic Acids Res 2024; 52:5852-5865. [PMID: 38742638 PMCID: PMC11162775 DOI: 10.1093/nar/gkae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Small RNAs (sRNAs) and riboswitches represent distinct classes of RNA regulators that control gene expression upon sensing metabolic or environmental variations. While sRNAs and riboswitches regulate gene expression by affecting mRNA and protein levels, existing studies have been limited to the characterization of each regulatory system in isolation, suggesting that sRNAs and riboswitches target distinct mRNA populations. We report that the expression of btuB in Escherichia coli, which is regulated by an adenosylcobalamin (AdoCbl) riboswitch, is also controlled by the small RNAs OmrA and, to a lesser extent, OmrB. Strikingly, we find that the riboswitch and sRNAs reduce mRNA levels through distinct pathways. Our data show that while the riboswitch triggers Rho-dependent transcription termination, sRNAs rely on the degradosome to modulate mRNA levels. Importantly, OmrA pairs with the btuB mRNA through its central region, which is not conserved in OmrB, indicating that these two sRNAs may have specific targets in addition to their common regulon. In contrast to canonical sRNA regulation, we find that OmrA repression of btuB is lost using an mRNA binding-deficient Hfq variant. Together, our study demonstrates that riboswitch and sRNAs modulate btuB expression, providing an example of cis- and trans-acting RNA-based regulatory systems maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Laurène Bastet
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Alexey P Korepanov
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Jonathan Jagodnik
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Jonathan P Grondin
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Anne-Marie Lamontagne
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Maude Guillier
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
12
|
Brunderová M, Havlíček V, Matyašovský J, Pohl R, Poštová Slavětínská L, Krömer M, Hocek M. Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat Commun 2024; 15:3054. [PMID: 38594306 PMCID: PMC11004144 DOI: 10.1038/s41467-024-47444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vojtěch Havlíček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- The Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, UK.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic.
| |
Collapse
|
13
|
Poddar S, Levitus M. Buffer-Dependent Photophysics of 2-Aminopurine: Insights into Fluorescence Quenching and Excited-State Interactions. J Phys Chem B 2024; 128:2640-2651. [PMID: 38452253 DOI: 10.1021/acs.jpcb.3c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
2-Aminopurine (2AP) is the most widely used fluorescent nucleobase analogue in DNA and RNA research. Its unique photophysical properties and sensitivity to environmental changes make it a useful tool for understanding nucleic acid dynamics and DNA-protein interactions. We studied the effect of ions present in commonly used buffer solutions on the excited-state photophysical properties of 2AP. Fluorescence quenching was negligible for tris(hydroxymethyl)aminomethane (TRIS), but significant for phosphate, carbonate, 3-(N-morpholino) propanesulfonic acid (MOPS), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffers. Results indicate that the two tautomers of 2AP (7H, 9H) are quenched by phosphate ions to different extents. Quenching by the H2PO4- ion is more pronounced for the 7H tautomer, while the opposite is true for the HPO42- ion. For phosphate ions, the results of the time-resolved fluorescence study cannot be explained using a simple collisional quenching mechanism. Instead, results are consistent with transient interactions between 2AP and the phosphate ions. We postulate that excited-state interactions between the 2AP tautomers and an H-bond acceptor (phosphate and carbonate) result in significant quenching of the singlet-excited state of 2AP. Such interactions manifest in biexponential fluorescence intensity decays with pre-exponential factors that vary with quencher concentration, and downward curvatures of the Stern-Volmer plots.
Collapse
Affiliation(s)
- Souvik Poddar
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
14
|
Blechar J, de Jesus V, Fürtig B, Hengesbach M, Schwalbe H. Shine-Dalgarno Accessibility Governs Ribosome Binding to the Adenine Riboswitch. ACS Chem Biol 2024; 19:607-618. [PMID: 38412235 DOI: 10.1021/acschembio.3c00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Translational riboswitches located in the 5' UTR of the messenger RNA (mRNA) regulate translation through variation of the accessibility of the ribosome binding site (RBS). These are the result of conformational changes in the riboswitch RNA governed by ligand binding. Here, we use a combination of single-molecule colocalization techniques (Single-Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) and Single-Molecule Kinetic Analysis of Ribosome Binding (SiM-KARB)) and microscale thermophoresis (MST) to investigate the adenine-sensing riboswitch in Vibrio vulnificus, focusing on the changes of accessibility between the ligand-free and ligand-bound states. We show that both methods faithfully report on the accessibility of the RBS within the riboswitch and that both methods identify an increase in accessibility upon adenine binding. Expanding on the regulatory context, we show the impact of the ribosomal protein S1 on the unwinding of the RNA secondary structure, thereby favoring ribosome binding even for the apo state. The determined rate constants suggest that binding of the ribosome is faster than the time required to change from the ON state to the OFF state, a prerequisite for efficient regulation decision.
Collapse
Affiliation(s)
- Julius Blechar
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Kumar S, Reddy G. Mechanism of Fluoride Ion Encapsulation by Magnesium Ions in a Bacterial Riboswitch. J Phys Chem B 2023; 127:9267-9281. [PMID: 37851949 DOI: 10.1021/acs.jpcb.3c03941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Riboswitches sense various ions in bacteria and activate gene expression to synthesize proteins that help maintain ion homeostasis. The crystal structure of the aptamer domain (AD) of the fluoride riboswitch shows that the F- ion is encapsulated by three Mg2+ ions bound to the ligand-binding domain (LBD) located at the core of the AD. The assembly mechanism of this intricate structure is unknown. To this end, we performed computer simulations using coarse-grained and all-atom RNA models to bridge multiple time scales involved in riboswitch folding and ion binding. We show that F- encapsulation by the Mg2+ ions bound to the riboswitch involves multiple sequential steps. Broadly, two Mg2+ ions initially interact with the phosphate groups of the LBD using water-mediated outer-shell coordination and transition to a direct inner-shell interaction through dehydration to strengthen their interaction with the LBD. We propose that the efficient binding mode of the third Mg2+ and F- is that they form a water-mediated ion pair and bind to the LBD simultaneously to minimize the electrostatic repulsion between three Mg2+ bound to the LBD. The tertiary stacking interactions among the LBD nucleobases alone are insufficient to stabilize the alignment of the phosphate groups to facilitate Mg2+ binding. We show that the stability of the whole assembly is an intricate balance of the interactions among the five phosphate groups, three Mg2+, and the encapsulated F- ion aided by the Mg2+ solvated water. These insights are helpful in the rational design of RNA-based ion sensors and fast-switching logic gates.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
16
|
Wang T, Simmel FC. Switchable Fluorescent Light-Up Aptamers Based on Riboswitch Architectures. Angew Chem Int Ed Engl 2023; 62:e202302858. [PMID: 37163453 DOI: 10.1002/anie.202302858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Fluorescent light-up RNA aptamers (FLAPs) such as Spinach or Mango can bind small fluorogens and activate their fluorescence. Here, we adopt a switching mechanism otherwise found in riboswitches and use it to engineer switchable FLAPs that can be activated or repressed by trigger oligonucleotides or small metabolites. The fluorophore binding pocket of the FLAPs comprises guanine (G) quadruplexes, whose critical nucleotides can be sequestered by corresponding anti-FLAP sequences, leading to an inactive conformation and thus preventing association with the fluorophore. We modified the FLAPs with designed toehold hairpins that carry either an anti-FLAP or an anti-anti-FLAP sequence within the loop region. The addition of an input RNA molecule triggers a toehold-mediated strand invasion process that refolds the FLAP into an active or inactive configuration. Several of our designs display close-to-zero leak signals and correspondingly high ON/OFF fluorescence ratios. We also modified purine aptamers to sequester a partial anti-FLAP or an anti-anti-FLAP sequence to control the formation of the fluorogen-binding conformation, resulting in FLAPs whose fluorescence is activated or deactivated in the presence of guanine or adenine. We demonstrate that switching modules can be easily combined to generate FLAPs whose fluorescence depends on several inputs with different types of input logic.
Collapse
Affiliation(s)
- Tianhe Wang
- Physics of Synthetic Biological Systems-E14, Department of Bioscience, TUM School of Natural Science, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Friedrich C Simmel
- Physics of Synthetic Biological Systems-E14, Department of Bioscience, TUM School of Natural Science, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| |
Collapse
|
17
|
Wonderlick DR, Widom JR, Harms MJ. Disentangling contact and ensemble epistasis in a riboswitch. Biophys J 2023; 122:1600-1612. [PMID: 36710492 PMCID: PMC10183321 DOI: 10.1016/j.bpj.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Mutations introduced into macromolecules often exhibit epistasis, where the effect of one mutation alters the effect of another. Knowing the mechanisms that lead to epistasis is important for understanding how macromolecules work and evolve, as well as for effective macromolecular engineering. Here, we investigate the interplay between "contact epistasis" (epistasis arising from physical interactions between mutated residues) and "ensemble epistasis" (epistasis that occurs when a mutation redistributes the conformational ensemble of a macromolecule, thus changing the effect of the second mutation). We argue that the two mechanisms can be distinguished in allosteric macromolecules by measuring epistasis at differing allosteric effector concentrations. Contact epistasis manifests as nonadditivity in the microscopic equilibrium constants describing the conformational ensemble. This epistatic effect is independent of allosteric effector concentration. Ensemble epistasis manifests as nonadditivity in thermodynamic observables-such as ligand binding-that are determined by the distribution of ensemble conformations. This epistatic effect strongly depends on allosteric effector concentration. Using this framework, we experimentally investigated the origins of epistasis in three pairwise mutant cycles introduced into the adenine riboswitch aptamer domain by measuring ligand binding as a function of allosteric effector concentration. We found evidence for both contact and ensemble epistasis in all cycles. Furthermore, we found that the two mechanisms of epistasis could interact with each other. For example, in one mutant cycle we observed 6 kcal/mol of contact epistasis in a microscopic equilibrium constant. In that same cycle, the maximum epistasis in ligand binding was only 1.5 kcal/mol: shifts in the ensemble masked the contribution of contact epistasis. Finally, our work yields simple heuristics for identifying contact and ensemble epistasis based on measurements of a biochemical observable as a function of allosteric effector concentration.
Collapse
Affiliation(s)
- Daria R Wonderlick
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon
| | - Julia R Widom
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon; Institute for Molecular Biology, University of Oregon, Eugene, Oregon; Oregon Center for Optical, Molecular, & Quantum Science, University of Oregon, Eugene, Oregon
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon; Institute for Molecular Biology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
18
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
19
|
Bao L, Xiao Y. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation. Methods Mol Biol 2023; 2568:103-122. [PMID: 36227564 DOI: 10.1007/978-1-0716-2687-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Riboswitches are RNA-structured elements that modulate gene expression by changing their conformation in response to specific metabolite ligand binding. Therefore, the biological functions of riboswitches mainly depend on the switching of secondary and three-dimensional structures in the presence and absence of the metabolite ligands. However, the binding mechanisms of cognate ligands to riboswitches are still not well understood. Here, we have introduced how to use explicit solvent molecular dynamics (MD) simulation to observe the binding process of cognate ligand to add adenine riboswitch aptamer at the atomic level. In addition, we have analyzed the driving factors of the binding process and calculated the binding free energy based on the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method.
Collapse
Affiliation(s)
- Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan, China.
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Zilberzwige-Tal S, Gazit D, Adsi H, Gartner M, Behl R, Laor Bar-Yosef D, Gazit E. Engineered Riboswitch Nanocarriers as a Possible Disease-Modifying Treatment for Metabolic Disorders. ACS NANO 2022; 16:11733-11741. [PMID: 35815521 DOI: 10.1021/acsnano.2c02802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both DNA- and RNA-based nanotechnologies are remarkably useful for the engineering of molecular devices in vitro and are applied in a vast collection of applications. Yet, the ability to integrate functional nucleic acid nanostructures in applications outside of the lab requires overcoming their inherent degradation sensitivity and subsequent loss of function. Viruses are minimalistic yet sophisticated supramolecular assemblies, capable of shielding their nucleic acid content in nuclease-rich environments. Inspired by this natural ability, we engineered RNA-virus-like particles (VLPs) nanocarriers (NCs). We showed that the VLPs can function as an exceptional protective shell against nuclease-mediated degradation. We then harnessed biological recognition elements and demonstrated how engineered riboswitch NCs can act as a possible disease-modifying treatment for genetic metabolic disorders. The functional riboswitch is capable of selectively and specifically binding metabolites and preventing their self-assembly process and its downstream effects. When applying the riboswitch nanocarriers to an in vivo yeast model of adenine accumulation and self-assembly, significant inhibition of the sensitivity to adenine feeding was observed. In addition, using an amyloid-specific dye, we proved the riboswitch nanocarriers' ability to reduce the level of intracellular amyloid-like metabolite cytotoxic structures. The potential of this RNA therapeutic technology does not apply only to metabolic disorders, as it can be easily fine-tuned to be applied to other conditions and diseases.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Danielle Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanaa Adsi
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Myra Gartner
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rahat Behl
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
21
|
NupR Responding to Multiple Signals Is a Nucleoside Permease Regulator in Bacillus thuringiensis BMB171. Microbiol Spectr 2022; 10:e0154322. [PMID: 35862946 PMCID: PMC9430930 DOI: 10.1128/spectrum.01543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside transport is essential for maintaining intracellular nucleoside and nucleobase homeostasis for living cells. Here, we identified an uncharacterized GntR/HutC family transcriptional regulator, NagR2, renamed NupR (nucleoside permease regulator), that mainly controls nucleoside transport in the Bacillus thuringiensis BMB171 strain. The deletion or overexpression of nupR affected the bacteria's utilization of guanosine, adenosine, uridine, and cytidine rather than thymidine. We further demonstrated that zinc ion is an effector for the NupR, dissociating NupR from its target DNA. Moreover, the expression of nupR is inhibited by NupR, ComK, and PurR, while it is promoted by CcpA. Also, a purine riboswitch located in its 5′ noncoding region influences the expression of nupR. Guanine is the ligand of the riboswitch, reducing the expression of nupR by terminating the transcription of nupR in advance. Hence, our results reveal an exquisite regulation mechanism enabling NupR to respond to multiple signals, control genes involved in nucleoside transport, and contribute to nucleoside substance utilization. Overall, this study provides essential clues for future studies exploring the function of the NupR homolog in other bacteria, such as Bacillus cereus, Bacillus anthracis, Klebsiella pneumoniae, and Streptococcus pneumoniae. IMPORTANCE The transport of nucleosides and their homeostasis within the cell are essential for growth and proliferation. Here, we have identified a novel transcription factor, NupR, which, to our knowledge, is the first GntR family transcription factor primarily involved in the regulation of nucleoside transport. Moreover, responding to diverse intracellular signals, NupR regulates nucleoside transport. It is vital for utilizing extracellular nucleosides and maintaining intracellular nucleoside homeostasis. NupR may also be involved in other pathways such as pH homeostasis, molybdenum cofactor biosynthesis, nitrate metabolism, and transport. In addition, nucleosides have various applications, such as antiviral drugs. Thus, the elucidation of the transport mechanism of nucleosides could be helpful for the construction of engineered strains for nucleoside production.
Collapse
|
22
|
Lins MRDCR, Corrêa GG, Amorim LADS, Franco RAL, Ribeiro NV, Jesus VND, Pedrolli DB. Characterization of Five Purine Riboswitches in Cellular and Cell-Free Expression Systems. Curr Microbiol 2022; 79:207. [PMID: 35622174 DOI: 10.1007/s00284-022-02902-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
Bacillus subtilis employs five purine riboswitches for the control of purine de novo synthesis and transport at the transcription level. All of them are formed by a structurally conserved aptamer, and a variable expression platform harboring a rho-independent transcription terminator. In this study, we characterized all five purine riboswitches under the context of active gene expression processes both in vitro and in vivo. We identified transcription pause sites located in the expression platform upstream of the terminator of each riboswitch. Moreover, we defined a correlation between in vitro transcription readthrough and in vivo gene expression. Our in vitro assay demonstrated that the riboswitches operate in the micromolar range of concentration for the cognate metabolite. Our in vivo assay showed the dynamics of the control of gene expression by each riboswitch. This study deepens the knowledge of the regulatory mechanism of purine riboswitches.
Collapse
Affiliation(s)
- Milca Rachel da Costa Ribeiro Lins
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista - Unesp, Rodovia Araraquara-Jau km1, Araraquara, 14800-903, Brazil
| | - Graciely Gomes Corrêa
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista - Unesp, Rodovia Araraquara-Jau km1, Araraquara, 14800-903, Brazil
| | - Laura Araujo da Silva Amorim
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista - Unesp, Rodovia Araraquara-Jau km1, Araraquara, 14800-903, Brazil
| | - Rafael Augusto Lopes Franco
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista - Unesp, Rodovia Araraquara-Jau km1, Araraquara, 14800-903, Brazil
| | - Nathan Vinicius Ribeiro
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista - Unesp, Rodovia Araraquara-Jau km1, Araraquara, 14800-903, Brazil
| | - Victor Nunes de Jesus
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista - Unesp, Rodovia Araraquara-Jau km1, Araraquara, 14800-903, Brazil
| | - Danielle Biscaro Pedrolli
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista - Unesp, Rodovia Araraquara-Jau km1, Araraquara, 14800-903, Brazil.
| |
Collapse
|
23
|
Kumar S, Reddy G. TPP Riboswitch Populates Holo-Form-like Structure Even in the Absence of Cognate Ligand at High Mg 2+ Concentration. J Phys Chem B 2022; 126:2369-2381. [PMID: 35298161 DOI: 10.1021/acs.jpcb.1c10794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Riboswitches are noncoding RNA that regulate gene expression by folding into specific three-dimensional structures (holo-form) upon binding by their cognate ligand in the presence of Mg2+. Riboswitch functioning is also hypothesized to be under kinetic control requiring large cognate ligand concentrations. We ask the question under thermodynamic conditions, can the riboswitches populate structures similar to the holo-form only in the presence of Mg2+ and absence of cognate ligand binding. We addressed this question using thiamine pyrophosphate (TPP) riboswitch as a model system and computer simulations using a coarse-grained model for RNA. The folding free energy surface (FES) shows that with the initial increase in Mg2+ concentration ([Mg2+]), the aptamer domain (AD) of TPP riboswitch undergoes a barrierless collapse in its dimensions. On further increase in [Mg2+], intermediates separated by barriers appear on the FES, and one of the intermediates has a TPP ligand-binding competent structure. We show that site-specific binding of the Mg2+ aids in the formation of tertiary contacts. For [Mg2+] greater than physiological concentration, AD folds into a structure similar to the crystal structure of the TPP holo-form even in the absence of the TPP ligand. The folding kinetics shows that TPP AD populates an intermediate due to the misalignment of two arms present in the structure, which acts as a kinetic trap, leading to larger folding timescales. The predictions of the intermediate structures from the simulations are amenable for experimental verification.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
24
|
Dey SK, Filonov GS, Olarerin-George AO, Jackson BT, Finley LWS, Jaffrey SR. Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag. Nat Chem Biol 2022; 18:180-190. [PMID: 34937909 PMCID: PMC8967656 DOI: 10.1038/s41589-021-00925-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023]
Abstract
Fluorogenic RNA aptamers are used to genetically encode fluorescent RNA and to construct RNA-based metabolite sensors. Unlike naturally occurring aptamers that efficiently fold and undergo metabolite-induced conformational changes, fluorogenic aptamers can exhibit poor folding, which limits their cellular fluorescence. To overcome this, we evolved a naturally occurring well-folded adenine riboswitch into a fluorogenic aptamer. We generated a library of roughly 1015 adenine aptamer-like RNAs in which the adenine-binding pocket was randomized for both size and sequence, and selected Squash, which binds and activates the fluorescence of green fluorescent protein-like fluorophores. Squash exhibits markedly improved in-cell folding and highly efficient metabolite-dependent folding when fused to a S-adenosylmethionine (SAM)-binding aptamer. A Squash-based ratiometric sensor achieved quantitative SAM measurements, revealed cell-to-cell heterogeneity in SAM levels and revealed metabolic origins of SAM. These studies show that the efficient folding of naturally occurring aptamers can be exploited to engineer well-folded cell-compatible fluorogenic aptamers and devices.
Collapse
Affiliation(s)
- Sourav Kumar Dey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Grigory S Filonov
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
- Sartorius, Ann Arbor, MI, USA
| | | | - Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
25
|
Xue Y, Liu Y. Incorporation of a FRET Pair into a Riboswitch RNA to Measure Mg 2+ Concentration and RNA Conformational Change in Cell. Int J Mol Sci 2022; 23:ijms23031493. [PMID: 35163416 PMCID: PMC8835884 DOI: 10.3390/ijms23031493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are natural biosensors that can regulate gene expression by sensing small molecules. Knowledge of the structural dynamics of riboswitches is crucial to elucidate their regulatory mechanism and develop RNA biosensors. In this work, we incorporated the fluorophore, Cy3, and its quencher, TQ3, into a full-length adenine riboswitch RNA and its isolated aptamer domain to monitor the dynamics of the RNAs in vitro and in cell. The adenine riboswitch was sensitive to Mg2+ concentrations and could be used as a biosensor to measure cellular Mg2+ concentrations. Additionally, the TQ3/Cy3-labeled adenine riboswitch yielded a Mg2+ concentration that was similar to that measured using a commercial assay kit. Furthermore, the fluorescence response to the adenine of the TQ3/Cy3-labeled riboswitch RNA was applied to determine the proportions of multiple RNA conformational changes in cells. The strategy developed in this work can be used to probe the dynamics of other RNAs in cells and may facilitate the developments of RNA biosensors, drugs and engineering.
Collapse
|
26
|
A transient conformation facilitates ligand binding to the adenine riboswitch. iScience 2021; 24:103512. [PMID: 34927032 PMCID: PMC8652005 DOI: 10.1016/j.isci.2021.103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
RNAs adopt various conformations to perform different functions in cells. Incapable of acquiring intermediates, the key initiations of ligand recognition in the adenine riboswitch have not been characterized. In this work, stopped-flow fluorescence was used to track structural switches in the full-length adenine riboswitch in real time. We used PLOR (position-selective labeling of RNA) to incorporate fluorophores into desired positions in the RNA. The switching sequence P1 responded to adenine more rapidly than helix P4 and the binding pocket, followed by stabilization of the binding pocket, P4, and annealing of P1. Moreover, a transient intermediate consisting of an unwound P1 was detected during adenine binding. These events were observed in both the WT riboswitch and a functional mutant. The findings provide insight into the conformational changes of the riboswitch RNA triggered by a ligand. Real-time tracking of the adenine riboswitch at nucleotide resolution A transient conformation with unwound P1 is identified in the adenine riboswitch Helix P1 responds to ligand quicker than the binding pocket or expression platform
Collapse
|
27
|
Du C, Wang Y, Gong S. Regulation of the ThiM riboswitch is facilitated by the trapped structure formed during transcription of the wild-type sequence. FEBS Lett 2021; 595:2816-2828. [PMID: 34644399 DOI: 10.1002/1873-3468.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
The ThiM riboswitch from Escherichia coli is a typical mRNA device that modulates downstream gene expression by sensing TPP. The helix-based RNA folding theory is used to investigate its detailed regulatory behaviors in cells. This RNA molecule is transcriptionally trapped in a state with the unstructured SD sequence in the absence of TPP, which induces downstream gene expression. As a key step to turn on gene expression, formation of this trapped state (the genetic ON state) highly depends on the co-transcriptional folding of its wild-type sequence. Instead of stabilities of the genetic ON and OFF states, the transcription rate, pause, and ligand levels are combined to affect the ThiM riboswitch-mediated gene regulation, which is consistent with a kinetic control model.
Collapse
Affiliation(s)
- Chengyi Du
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, China
| | - Yujie Wang
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, China
| | - Sha Gong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, China
| |
Collapse
|
28
|
St-Pierre P, Shaw E, Jacques S, Dalgarno PA, Perez-Gonzalez C, Picard-Jean F, Penedo JC, Lafontaine DA. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. Nucleic Acids Res 2021; 49:5891-5904. [PMID: 33963862 PMCID: PMC8191784 DOI: 10.1093/nar/gkab307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.
Collapse
Affiliation(s)
- Patrick St-Pierre
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Euan Shaw
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Samuel Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul A Dalgarno
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Cibran Perez-Gonzalez
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Frédéric Picard-Jean
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
29
|
Wu L, Liu Z, Liu Y. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch. RNA Biol 2021; 18:2007-2015. [PMID: 33573442 DOI: 10.1080/15476286.2021.1886755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ligand binding and temperature play important roles in riboswitch RNAs' structures and functions. However, most studies focused on studying structural dynamics or gene-regulation function of riboswitches from the aspect of ligand, instead of temperature. Here we combined NMR, ITC, stopped-flow and in vivo assays to investigate the ligand-triggered switch of adenine riboswitch from 10 to 45°C. Our results demonstrated that at single-nucleotide resolution, structural regions sensed ligand and temperature diversely. Temperature had opposite effects on ligand-binding and gene-regulation of adenine riboswitch. Compared with higher temperature, the RNA bound with its cognate ligand obviously stronger, while its regulatory capacity was weakened at lower temperature. In addition, application of specific-labelled RNAs to the stopped-flow experiments identified the real-time folding of the specific positions upon ligand addition at different temperatures. The kissing loop and internal loop at the riboswitch responded to ligand and temperature differently. The distinct thermo-dynamics of adenine riboswitch exposed here may contribute to the fields of RNA sensors and drug design.
Collapse
Affiliation(s)
- Lin Wu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Liu
- National Facility for Protein Science (Shanghai), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Drogalis LK, Batey RT. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. PLoS One 2020; 15:e0243155. [PMID: 33259551 PMCID: PMC7707468 DOI: 10.1371/journal.pone.0243155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
Riboswitches, generally located in the 5'-leader of bacterial mRNAs, direct expression via a small molecule-dependent structural switch that informs the transcriptional or translational machinery. While the structure and function of riboswitch effector-binding (aptamer) domains have been intensely studied, only recently have the requirements for efficient linkage between small molecule binding and the structural switch in the cellular and co-transcriptional context begun to be actively explored. To address this aspect of riboswitch function, we have performed a structure-guided mutagenic analysis of the B. subtilis pbuE adenine-responsive riboswitch, one of the simplest riboswitches that employs a strand displacement switching mechanism to regulate transcription. Using a cell-based fluorescent protein reporter assay to assess ligand-dependent regulatory activity in E. coli, these studies revealed previously unrecognized features of the riboswitch. Within the aptamer domain, local and long-range conformational dynamics influenced by sequences within helices have a significant effect upon efficient regulatory switching. Sequence features of the expression platform including the pre-aptamer leader sequence, a toehold helix and an RNA polymerase pause site all serve to promote strong ligand-dependent regulation. By optimizing these features, we were able to improve the performance of the B. subtilis pbuE riboswitch in E. coli from 5.6-fold induction of reporter gene expression by the wild type riboswitch to over 120-fold in the top performing designed variant. Together, these data point to sequence and structural features distributed throughout the riboswitch required to strike a balance between rates of ligand binding, transcription and secondary structural switching via a strand exchange mechanism and yield new insights into the design of artificial riboswitches.
Collapse
MESH Headings
- Adenine/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Escherichia coli K12/genetics
- Genes, Reporter
- Genetic Variation
- Ligands
- Models, Genetic
- Models, Molecular
- Mutagenesis
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Riboswitch/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Lea K. Drogalis
- Department of Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sung HL, Nesbitt DJ. High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation. Phys Chem Chem Phys 2020; 22:15853-15866. [PMID: 32706360 DOI: 10.1039/d0cp01921f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deep sea biology is known to thrive at pressures up to ≈1 kbar, which motivates fundamental biophysical studies of biomolecules under such extreme environments. In this work, the conformational equilibrium of the lysine riboswitch has been systematically investigated by single molecule FRET (smFRET) microscopy at pressures up to 1500 bar. The lysine riboswitch preferentially unfolds with increasing pressure, which signals an increase in free volume (ΔV0 > 0) upon folding of the biopolymer. Indeed, the effective lysine binding constant increases quasi-exponentially with pressure rise, which implies a significant weakening of the riboswitch-ligand interaction in a high-pressure environment. The effects of monovalent/divalent cations and osmolytes on folding are also explored to acquire additional insights into cellular mechanisms for adapting to high pressures. For example, we find that although Mg2+ greatly stabilizes folding of the lysine riboswitch (ΔΔG0 < 0), there is negligible impact on changes in free volume (ΔΔV0 ≈ 0) and thus any pressure induced denaturation effects. Conversely, osmolytes (commonly at high concentrations in deep sea marine species) such as the trimethylamine N-oxide (TMAO) significantly reduce free volumes (ΔΔV0 < 0) and thereby diminish pressure-induced denaturation. We speculate that, besides stabilizing RNA structure, enhanced levels of TMAO in cells might increase the dynamic range for competent riboswitch folding by suppressing the pressure-induced denaturation response. This in turn could offer biological advantage for vertical migration of deep-sea species, with impacts on food searching in a resource limited environment.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
32
|
McCluskey K, Boudreault J, St-Pierre P, Perez-Gonzalez C, Chauvier A, Rizzi A, Beauregard PB, Lafontaine DA, Penedo JC. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2. Nucleic Acids Res 2020; 47:6478-6487. [PMID: 31045204 PMCID: PMC6614840 DOI: 10.1093/nar/gkz316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer–ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK
| | - Julien Boudreault
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Patrick St-Pierre
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Adrien Chauvier
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Adrien Rizzi
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Pascale B Beauregard
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | | | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, Scotland KY16 9ST, UK
| |
Collapse
|
33
|
Bao L, Wang J, Xiao Y. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Phys Rev E 2020; 100:022412. [PMID: 31574664 DOI: 10.1103/physreve.100.022412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 11/07/2022]
Abstract
Riboswitches are RNA-structured elements that modulate gene expression through changing their conformation in response to specific metabolite binding. However, the regulation mechanisms of riboswitches by ligand binding are still not well understood. At present two possible ligand-binding mechanisms have been proposed: conformational selection and induced fit. Based on explicit-solvent molecular dynamics (MD) simulations, we have studied the process of the binding of ligands (adenines) to add adenine riboswitch aptamer (AARA) in detail. Our results show that the relative high flexibility of the junction J23 of AARA allows the ligands to be captured by the binding pocket of AARA in a near-native state, which may be driven by hydrophobic and base-stacking interactions. In addition, the binding of a ligand makes the stem P1 and the junction J23 of AARA more stable than in the absence of the ligand. Generally, our analyses show that the ligand-binding process of the add adenine riboswitch may be partially embodied by a conformational selection mechanism.
Collapse
Affiliation(s)
- Lei Bao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
34
|
McGovern-Gooch KR, Baird NJ. Fluorescence-based investigations of RNA-small molecule interactions. Methods 2019; 167:54-65. [PMID: 31129289 DOI: 10.1016/j.ymeth.2019.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Interrogating non-coding RNA structures and functions with small molecules is an area of rapidly increasing interest among biochemists and chemical biologists. However, many biochemical approaches to monitoring RNA structures are time-consuming and low-throughput, and thereby are only of limited utility for RNA-small molecule studies. Fluorescence-based techniques are powerful tools for rapid investigation of RNA conformations, dynamics, and interactions with small molecules. Many fluorescence methods are amenable to high-throughput analysis, enabling library screening for small molecule binders. In this review, we summarize numerous fluorescence-based approaches for identifying and characterizing RNA-small molecule interactions. We describe in detail a high-information content dual-reporter FRET assay we developed to characterize small molecule-induced conformational and stability changes. Our assay is uniquely suited as a platform for both small molecule discovery and thorough characterization of RNA-small molecule binding mechanisms. Given the growing recognition of non-coding RNAs as attractive targets for therapeutic intervention, we anticipate our FRET assay and other fluorescence-based techniques will be indispensable for the development of potent and specific small molecule inhibitors targeting RNA.
Collapse
Affiliation(s)
- Kayleigh R McGovern-Gooch
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104 United States
| | - Nathan J Baird
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104 United States.
| |
Collapse
|
35
|
Wicks SL, Hargrove AE. Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA. Methods 2019; 167:3-14. [PMID: 31051253 DOI: 10.1016/j.ymeth.2019.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/15/2023] Open
Abstract
Fluorescent indicator displacement (FID) assays are an advantageous approach to convert receptors into optical sensors that can detect binding of various ligands. In particular, the identification of ligands that bind to RNA receptors has become of increasing interest as the roles of RNA in cellular processes and disease pathogenesis continue to be discovered. Small molecules have been validated as tools to elucidate unknown RNA functions, underscoring the critical need to rapidly identify and quantitatively characterize RNA:small molecule interactions for the development of chemical probes. The successful application of FID assays to evaluate interactions between diverse RNA receptors and small molecules has been facilitated by the characterization of distinct fluorescent indicators that reversibly bind RNA and modulate the fluorescence signal. The utility of RNA-based FID assays to both academia and industry has been demonstrated through numerous uses in high-throughput screening efforts, structure-activity relationship studies, and in vitro target engagement studies. Furthermore, the development, optimization, and validation of a variety of RNA-based FID assays has led to general guidelines that can be utilized for facile implementation of the method with new or underexplored RNA receptors. Altogether, the use of RNA-based FID assays as a general analysis tool has provided valuable insights into small molecule affinity and selectivity, furthering the fundamental understanding of RNA:small molecule recognition. In this review, we will summarize efforts to employ FID assays using RNA receptors and describe the significant contributions of the method towards the development of chemical probes to reveal unknown RNA functions.
Collapse
Affiliation(s)
- Sarah L Wicks
- Duke University, Department of Chemistry, Durham, NC 27705, United States
| | - Amanda E Hargrove
- Duke University, Department of Chemistry, Durham, NC 27705, United States.
| |
Collapse
|
36
|
Yoon HR, Coria A, Laederach A, Heitsch C. Towards an understanding of RNA structural modalities: a riboswitch case study. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2019; 7:48-63. [PMID: 34113790 DOI: 10.1515/cmb-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A riboswitch is a type of RNA molecule that regulates important biological functions by changing structure, typically under ligand-binding. We assess the extent that these ligand-bound structural alternatives are present in the Boltzmann sample, a standard RNA secondary structure prediction method, for three riboswitch test cases. We use the cluster analysis tool RNAStructProfiling to characterize the different modalities present among the suboptimal structures sampled. We compare these modalities to the putative base pairing models obtained from independent experiments using NMR or fluorescence spectroscopy. We find, somewhat unexpectedly, that profiling the Boltzmann sample captures evidence of ligand-bound conformations for two of three riboswitches studied. Moreover, this agreement between predicted modalities and experimental models is consistent with the classification of riboswitches into thermodynamic versus kinetic regulatory mechanisms. Our results support cluster analysis of Boltzmann samples by RNAStructProfiling as a possible basis for de novo identification of thermodynamic riboswitches, while highlighting the challenges for kinetic ones.
Collapse
Affiliation(s)
- Hee Rhang Yoon
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332
| | - Aaztli Coria
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599
| | - Christine Heitsch
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332
| |
Collapse
|
37
|
Combined smFRET and NMR analysis of riboswitch structural dynamics. Methods 2019; 153:22-34. [DOI: 10.1016/j.ymeth.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
|
38
|
He Y, Zhou Y, Chen D, Liu J. Global Folding of a Na
+
‐Specific DNAzyme Studied by FRET. Chembiochem 2018; 20:385-393. [DOI: 10.1002/cbic.201800548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and InstrumentsUniversity of Tianjin Tianjin 300072 P.R. China
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Yibo Zhou
- School of Chemistry and Biological EngineeringChangsha University of Science and Technology Changsha 410114 P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and InstrumentsUniversity of Tianjin Tianjin 300072 P.R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
39
|
Ray S, Chauvier A, Walter NG. Kinetics coming into focus: single-molecule microscopy of riboswitch dynamics. RNA Biol 2018; 16:1077-1085. [PMID: 30328748 DOI: 10.1080/15476286.2018.1536594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Riboswitches are dynamic RNA motifs that are mostly embedded in the 5'-untranslated regions of bacterial mRNAs, where they regulate gene expression transcriptionally or translationally by undergoing conformational changes upon binding of a small metabolite or ion. Due to the small size of typical ligands, relatively little free energy is available from ligand binding to overcome the often high energetic barrier of reshaping RNA structure. Instead, most riboswitches appear to take advantage of the directional and hierarchical folding of RNA by employing the ligand as a structural 'linchpin' to adjust the kinetic partitioning between alternate folds. In this model, even small, local structural and kinetic effects of ligand binding can cascade into global RNA conformational changes affecting gene expression. Single-molecule (SM) microscopy tools are uniquely suited to study such kinetically controlled RNA folding since they avoid the ensemble averaging of bulk techniques that loses sight of unsynchronized, transient, and/or multi-state kinetic behavior. This review summarizes how SM methods have begun to unravel riboswitch-mediated gene regulation.
Collapse
Affiliation(s)
- Sujay Ray
- a Single Molecule Analysis Group, Department of Chemistry, University of Michigan , Ann Arbor , MI , USA
| | - Adrien Chauvier
- a Single Molecule Analysis Group, Department of Chemistry, University of Michigan , Ann Arbor , MI , USA
| | - Nils G Walter
- a Single Molecule Analysis Group, Department of Chemistry, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
40
|
Endoh T, Sugimoto N. Co-Transcriptional Molecular Assembly Results in a Kinetically Controlled Irreversible RNA Conformational Switch. Anal Chem 2018; 90:11193-11197. [DOI: 10.1021/acs.analchem.8b03427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi,
Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi,
Chuo-ku, Kobe, 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
41
|
Passow KT, Harki DA. 4-Cyanoindole-2'-deoxyribonucleoside (4CIN): A Universal Fluorescent Nucleoside Analogue. Org Lett 2018; 20:4310-4313. [PMID: 29989830 PMCID: PMC6168291 DOI: 10.1021/acs.orglett.8b01746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis and characterization of a universal and fluorescent nucleoside, 4-cyanoindole-2'-deoxyribonucleoside (4CIN), and its incorporation into DNA is described. 4CIN is a highly efficient fluorophore with quantum yields >0.90 in water. When incorporated into duplex DNA, 4CIN pairs equivalently with native nucleobases and has uniquely high quantum yields ranging from 0.15 to 0.31 depending on sequence and hybridization contexts, surpassing that of 2-aminopurine, the prototypical nucleoside fluorophore. 4CIN constitutes a new isomorphic nucleoside for diverse applications.
Collapse
Affiliation(s)
- Kellan T. Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
42
|
Abduljalil JM. Bacterial riboswitches and RNA thermometers: Nature and contributions to pathogenesis. Noncoding RNA Res 2018; 3:54-63. [PMID: 30159440 PMCID: PMC6096418 DOI: 10.1016/j.ncrna.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens are always challenged by fluctuations of chemical and physical parameters that pose serious threats to cellular integrity and metabolic status. Sudden deprivation of nutrients or key metabolites, changes in surrounding pH, and temperature shifts are the most important examples of such parameters. To elicit a proper response to such fluctuations, bacterial cells coordinate the expression of parameter-relevant genes. Although protein-mediated control of gene expression is well appreciated since many decades, RNA-based regulation has been discovered in early 2000s as a parallel level of regulation. Small regulatory RNAs have emerged as one of the most widespread and important gene regulatory systems in bacteria with rare representatives found in Archaea and Eukarya. Riboswitches and thermosensors are cis-encoded RNA regulatory elements that employ different mechanisms to regulate the expression of related genes controlling key metabolic pathways and genes of temperature relevant proteins including virulence factors. The extent of RNA contributions to gene regulation is not completely known even in well-studied models such E. coli and B. subtilis. In depth understanding of riboswitches is promising for opportunity to discover a narrow spectrum antibacterial drugs that target riboswitches of essential metabolic pathways.
Collapse
Key Words
- 5ʹ-UTRs, 5ʹ-untranslated region
- AdoCbl, adenosylcobalamine
- Aptamer
- Bacterial pathogenicity
- CSPs, Cold Shock Proteins
- FMN, Flavin mononucleotide
- Gene expression
- ORFs, open reading frames
- RBS, Ribosomal Binding Site
- RNA thermometer
- RNAP, RNA polymerase
- RNAT, RNA thermometer
- Riboswitches
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SD, Shine-Dalgarno
- TPP, Thiamine pyrophosphate
- Transcription termination
- Virulence
Collapse
|
43
|
Kerzhner M, Matsuoka H, Wuebben C, Famulok M, Schiemann O. High-Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2018; 57:2923-2931. [PMID: 29715006 DOI: 10.1021/acs.biochem.8b00040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions. We then show that conformations of the preQ1 aptamer and its dynamics can be monitored in the absence and presence of Mg2+ and a preQ1 ligand by continuous wave electron paramagnetic resonance spectroscopy at room temperature and pulsed electron-electron double resonance spectroscopy (PELDOR or DEER) in the frozen state.
Collapse
Affiliation(s)
- Mark Kerzhner
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit c/o Kekulé-Institut für Organische Chemie und Biochemie University of Bonn , Gerhard-Domagk-Strasse 1 , 53121 Bonn , Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| | - Michael Famulok
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit c/o Kekulé-Institut für Organische Chemie und Biochemie University of Bonn , Gerhard-Domagk-Strasse 1 , 53121 Bonn , Germany.,Max Planck Fellowship Chemical Biology Group , Stiftung caesar , Ludwig-Erhard-Allee 2 , 53175 Bonn , Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry , University of Bonn , Wegelerstrasse 12 , 53115 Bonn , Germany
| |
Collapse
|
44
|
Manz C, Kobitski AY, Samanta A, Jäschke A, Nienhaus GU. The multi-state energy landscape of the SAM-I riboswitch: A single-molecule Förster resonance energy transfer spectroscopy study. J Chem Phys 2018; 148:123324. [DOI: 10.1063/1.5003783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Christoph Manz
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
- HEiKA–Heidelberg Karlsruhe Research Partnership, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrei Yu. Kobitski
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Ayan Samanta
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Andres Jäschke
- HEiKA–Heidelberg Karlsruhe Research Partnership, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
- HEiKA–Heidelberg Karlsruhe Research Partnership, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
45
|
McCluskey K, Carlos Penedo J. An integrated perspective on RNA aptamer ligand-recognition models: clearing muddy waters. Phys Chem Chem Phys 2018; 19:6921-6932. [PMID: 28225108 DOI: 10.1039/c6cp08798a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Riboswitches are short RNA motifs that sensitively and selectively bind cognate ligands to modulate gene expression. Like protein receptor-ligand pairs, their binding dynamics are traditionally categorized as following one of two paradigmatic mechanisms: conformational selection and induced fit. In conformational selection, ligand binding stabilizes a particular state already present in the receptor's dynamic ensemble. In induced fit, ligand-receptor interactions enable the system to overcome the energetic barrier into a previously inaccessible state. In this article, we question whether a polarized division of RNA binding mechanisms truly meets the conceptual needs of the field. We will review the history behind this classification of RNA-ligand interactions, and the way induced fit in particular has been rehabilitated by single-molecule studies of RNA aptamers. We will highlight several recent results from single-molecule experimental studies of riboswitches that reveal gaps or even contradictions between common definitions of the two terms, and we will conclude by proposing a more robust framework that considers the range of RNA behaviors unveiled in recent years as a reality to be described, rather than an increasingly unwieldy set of exceptions to the traditional models.
Collapse
Affiliation(s)
- K McCluskey
- Department of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK.
| | - J Carlos Penedo
- Department of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK. and Biomolecular Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9SS, UK.
| |
Collapse
|
46
|
Tian S, Kladwang W, Das R. Allosteric mechanism of the V. vulnificus adenine riboswitch resolved by four-dimensional chemical mapping. eLife 2018; 7:29602. [PMID: 29446752 PMCID: PMC5847336 DOI: 10.7554/elife.29602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
The structural interconversions that mediate the gene regulatory functions of RNA molecules may be different from classic models of allostery, but the relevant structural correlations have remained elusive in even intensively studied systems. Here, we present a four-dimensional expansion of chemical mapping called lock-mutate-map-rescue (LM2R), which integrates multiple layers of mutation with nucleotide-resolution chemical mapping. This technique resolves the core mechanism of the adenine-responsive V. vulnificus add riboswitch, a paradigmatic system for which both Monod-Wyman-Changeux (MWC) conformational selection models and non-MWC alternatives have been proposed. To discriminate amongst these models, we locked each functionally important helix through designed mutations and assessed formation or depletion of other helices via compensatory rescue evaluated by chemical mapping. These LM2R measurements give strong support to the pre-existing correlations predicted by MWC models, disfavor alternative models, and suggest additional structural heterogeneities that may be general across ligand-free riboswitches.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Rhiju Das
- Department of Physics, Stanford University, Stanford, United States
| |
Collapse
|
47
|
Gong S, Wang Y, Wang Z, Sun Y, Zhang W. Folding behaviors of purine riboswitch aptamers. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11859-018-1292-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat Commun 2018; 9:18. [PMID: 29295996 PMCID: PMC5750238 DOI: 10.1038/s41467-017-02435-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
Fluorescent RNA aptamers are useful as markers for tracking RNA molecules inside cells and for creating biosensor devices. Förster resonance energy transfer (FRET) based on fluorescent proteins has been used to detect conformational changes, however, such FRET devices have not yet been produced using fluorescent RNA aptamers. Here we develop an RNA aptamer-based FRET (apta-FRET) system using single-stranded RNA origami scaffolds. To obtain FRET, the fluorescent aptamers Spinach and Mango are placed in close proximity on the RNA scaffolds and a new fluorophore is synthesized to increase spectral overlap. RNA devices that respond to conformational changes are developed, and finally, apta-FRET constructs are expressed in E. coli where FRET is observed, demonstrating that the apta-FRET system is genetically encodable and that the RNA nanostructures fold correctly in bacteria. We anticipate that the RNA apta-FRET system could have applications as ratiometric sensors for real-time studies in cell and synthetic biology. FRET has been used to study protein conformational changes but has never been applied to RNA aptamers. Here the authors develop a genetically encodable RNA aptamer-based FRET system on single-stranded RNA origami scaffolds, and demonstrate it can be used to study RNA conformational changes.
Collapse
|
49
|
Lai WJC, Ermolenko DN. Ensemble and single-molecule FRET studies of protein synthesis. Methods 2017; 137:37-48. [PMID: 29247758 DOI: 10.1016/j.ymeth.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022] Open
Abstract
Protein synthesis is a complex, multi-step process that involves large conformational changes of the ribosome and protein factors of translation. Over the last decade, Förster resonance energy transfer (FRET) has become instrumental for studying structural rearrangements of the translational apparatus. Here, we discuss the design of ensemble and single-molecule (sm) FRET assays of translation. We describe a number of experimental strategies that can be used to introduce fluorophores into the ribosome, tRNA, mRNA and protein factors of translation. Alternative approaches to tethering of translation components to the microscope slide in smFRET experiments are also reviewed. Finally, we discuss possible challenges in the interpretation of FRET data and ways to address these challenges.
Collapse
Affiliation(s)
- Wan-Jung C Lai
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
50
|
Uhm H, Hohng S. Ligand Recognition Mechanism of Thiamine Pyrophosphate Riboswitch Aptamer. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heesoo Uhm
- Department of Physics and Astronomy; Seoul National University; Seoul 151-747 Korea
- National Center of Creative Research Initiatives; Seoul National University; Seoul 151-747 Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy; Seoul National University; Seoul 151-747 Korea
- National Center of Creative Research Initiatives; Seoul National University; Seoul 151-747 Korea
- Department of Biophysics and Chemical Biology; Seoul National University; Seoul 151-747 Korea
| |
Collapse
|