1
|
Li W, Liang H, He W, Gao X, Wu Z, Hu T, Lin X, Wang M, Zhong Y, Zhang H, Ge L, Jin X, Xiao L, Zou Y. Genomic and functional diversity of cultivated Bifidobacterium from human gut microbiota. Heliyon 2024; 10:e27270. [PMID: 38463766 PMCID: PMC10923715 DOI: 10.1016/j.heliyon.2024.e27270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
The genus Bifidobacterium widely exists in human gut and has been increasingly used as the adjuvant probiotics for the prevention and treatment of diseases. However, the functional differences of Bifidobacterium genomes from different regions of the world remain unclear. We here describe an extensive study on the genomic characteristics and function annotations of 1512 genomes (clustered to 849 non-redundant genomes) of Bifidobacterium cultured from human gut. The distribution of some carbohydrate-active enzymes varied among different Bifidobacterium species and continents. More than 36% of the genomes of B. pseudocatenulatum harbored biosynthetic gene clusters of lanthipeptide-class-iv. 99.76% of the cultivated genomes of Bifidobacterium harbored genes of bile salt hydrolase. Most genomes of B. adolescentis, and all genomes of B. dentium harbored genes involved in gamma-aminobutyric acid synthesis. B. longum subsp. infantis were characterized harboring most genes related to human milk oligosaccharide utilization. Significant differences between the distribution of antibiotic resistance genes among different species and continents revealed the importance to use antibiotics precisely in the clinical treatment. Phages infecting Bifidobacterium and horizontal gene transfers occurring in genomes of Bifidobacterium were dependent on species and region sources, and might help Bifidobacterium adapt to the environment. In addition, the distribution of Bifidobacterium in human gut was found varied from different regions of the world. This study represents a comprehensive view of characteristics and functions of genomes of cultivated Bifidobacterium from human gut, and enables clinical advances in the future.
Collapse
Affiliation(s)
- Wenxi Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- BGI Research, Shenzhen, 518083, China
| | | | - Wenxin He
- BGI Research, Shenzhen, 518083, China
| | | | - Zhinan Wu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xiaoqian Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- BGI Research, Shenzhen, 518083, China
| | - Mengmeng Wang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyi Zhong
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Haifeng Zhang
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Lan Ge
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
- BGI Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
2
|
Barbosa J, Caetano T, Mösker E, Süssmuth R, Mendo S. Lichenicidin rational site-directed mutagenesis library: A tool to generate bioengineered lantibiotics. Biotechnol Bioeng 2019; 116:3053-3062. [PMID: 31350903 DOI: 10.1002/bit.27130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that arise as an alternative to the traditional antibiotics. Lichenicidin is active against clinically relevant bacteria and it was the first lantibiotic to be fully produced in vivo in the Gram-negative host Escherichia coli. Here, we present the results of a library of lichenicidin mutants, in which the mutations were generated based on the extensive bibliographical search available for other lantibiotics. The antibacterial activity of two-peptide lantibiotics, as is lichenicidin, requires the synergistic activity of two peptides. We established a method that allows screening for bioactivity which does not require the purification of the complementary peptide. It is an inexpensive, fast and user-friendly method that can be scaled up to screen large libraries of bioengineered two-peptide lantibiotics. The applied system is reliable and robust because, in general, the results obtained corroborate structure-activity relationship studies carried out for other lantibiotics.
Collapse
Affiliation(s)
- Joana Barbosa
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Eva Mösker
- Institut für Chemie, Technical University of Berlin, Berlin, Germany
| | - Roderich Süssmuth
- Institut für Chemie, Technical University of Berlin, Berlin, Germany
| | - Sónia Mendo
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Barbosa J, Caetano T, Mendo S. Class I and Class II Lanthipeptides Produced by Bacillus spp. JOURNAL OF NATURAL PRODUCTS 2015; 78:2850-2866. [PMID: 26448102 DOI: 10.1021/np500424y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The increasing number of multidrug-resistant pathogens, along with the small number of new antimicrobials under development, leads to an increased need for novel alternatives. Class I and class II lanthipeptides (also known as lantibiotics) have been considered promising alternatives to classical antibiotics. In addition to their relevant medical applications, they are used as probiotics, prophylactics, preservatives, and additives in cosmetics and personal-care products. The genus Bacillus is a prolific source of bioactive compounds including ribosomally and nonribosomally synthesized antibacterial peptides. Accordingly, there is significant interest in the biotechnological potential of members of the genus Bacillus as producers of antimicrobial lanthipeptides. The present review focuses on aspects of the biosynthesis, gene cluster organization, structure, antibacterial spectrum, and bioengineering approaches of lanthipeptides produced by Bacillus strains. Their efficacy and potency against some clinically relevant strains, including MRSA and VRE, are also discussed. Although no lanthipeptides are currently in clinical use, the information herein highlights the potential of these compounds.
Collapse
Affiliation(s)
- Joana Barbosa
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Maffioli SI, Monciardini P, Catacchio B, Mazzetti C, Münch D, Brunati C, Sahl HG, Donadio S. Family of class I lantibiotics from actinomycetes and improvement of their antibacterial activities. ACS Chem Biol 2015; 10:1034-42. [PMID: 25574687 DOI: 10.1021/cb500878h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lantibiotics, an abbreviation for "lanthionine-containing antibiotics", interfere with bacterial metabolism by a mechanism not exploited by the antibiotics currently in clinical use. Thus, they have aroused interest as a source for new therapeutic agents because they can overcome existing resistance mechanisms. Starting from fermentation broth extracts preselected from a high-throughput screening program for discovering cell-wall inhibitors, we isolated a series of related class I lantibiotics produced by different genera of actinomycetes. Analytical techniques together with explorative chemistry have been used to establish their structures: the newly described compounds share a common 24 aa sequence with the previously reported lantibiotic planosporicin (aka 97518), differing at positions 4, 6, and 14. All of these compounds maintain an overall -1 charge at physiological pH. While all of these lantibiotics display modest antibacterial activity, their potency can be substantially modulated by progressively eliminating the negative charges, with the most active compounds carrying basic amide derivatives of the two carboxylates originally present in the natural compounds. Interestingly, both natural and chemically modified lantibiotics target the key biosynthetic intermediate lipid II, but the former compounds do not bind as effectively as the latter in vivo. Remarkably, the basic derivatives display an antibacterial potency and a killing effect similar to those of NAI-107, a distantly related actinomycete-produced class I lantibiotic which lacks altogether carboxyl groups and which is a promising clinical candidate for treating Gram-positive infections caused by multi-drug-resistant pathogens.
Collapse
Affiliation(s)
| | | | - Bruno Catacchio
- Naicons srl, 20139 Milano, Italy
- ITB-CNR Segrate, 20090 Milano, Italy
| | - Carlo Mazzetti
- Naicons srl, 20139 Milano, Italy
- ITB-CNR Segrate, 20090 Milano, Italy
| | - Daniela Münch
- Institute
of Medical Microbiology, Immunology and Parasitology, Pharmaceutical
Microbiology Section, University of Bonn, 53113 Bonn, Germany
| | | | - Hans-Georg Sahl
- Institute
of Medical Microbiology, Immunology and Parasitology, Pharmaceutical
Microbiology Section, University of Bonn, 53113 Bonn, Germany
| | - Stefano Donadio
- Naicons srl, 20139 Milano, Italy
- KtedoGen srl, 21046 Milano, Italy
| |
Collapse
|