1
|
Luteijn MJ, Bhaskar V, Trojer D, Schürz M, Mahboubi H, Handl C, Pizzato N, Pfeifer M, Dafinca R, Voshol H, Giorgetti E, Manneville C, Garnier IPM, Müller M, Zeng F, Buntin K, Markwalder R, Schröder H, Weiler J, Khar D, Schuhmann T, Groot-Kormelink PJ, Keller CG, Farmer P, MacKay A, Beibel M, Roma G, D’Ario G, Merkl C, Schebesta M, Hild M, Elwood F, Vahsen BF, Ripin N, Clery A, Allain F, Labow M, Gabriel D, Chao JA, Talbot K, Nash M, Hunziker J, Meisner-Kober NC. High-throughput screen of 100 000 small molecules in C9ORF72 ALS neurons identifies spliceosome modulators that mobilize G4C2 repeat RNA into nuclear export and repeat associated non-canonical translation. Nucleic Acids Res 2025; 53:gkaf253. [PMID: 40207633 PMCID: PMC11983130 DOI: 10.1093/nar/gkaf253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
An intronic G4C2 repeat expansion in the C9ORF72 gene is the major known cause for Amyotrophic Lateral Sclerosis (ALS), with current evidence for both, loss of function and pathological gain of function disease mechanisms. We screened 96 200 small molecules in C9ORF72 patient iPS neurons for modulation of nuclear G4C2 RNA foci and identified 82 validated hits, including the Brd4 inhibitor JQ1 as well as novel analogs of Spliceostatin-A, a known modulator of SF3B1, the branch point binding protein of the U2-snRNP. Spliceosome modulation by these SF3B1 targeted compounds recruits SRSF1 to nuclear G4C2 RNA, mobilizing it from RNA foci into nucleocytoplasmic export. This leads to increased repeat-associated non-canonical (RAN) translation and ultimately, enhanced cell toxicity. Our data (i) provide a new pharmacological entry point with novel as well as known, publicly available tool compounds for dissection of C9ORF72 pathobiology in C9ORF72 ALS models, (ii) allowing to differentially modulate RNA foci versus RAN translation, and (iii) suggest that therapeutic RNA foci elimination strategies warrant caution due to a potential storage function, counteracting translation into toxic dipeptide repeat polyproteins. Instead, our data support modulation of nuclear export via SRSF1 or SR protein kinases as possible targets for future pharmacological drug discovery.
Collapse
Affiliation(s)
- Maartje J Luteijn
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Varun Bhaskar
- Friedrich Miescher Institute for Biomedical Research, Department Genomic Regulation, Basel, 4056, Switzerland
| | - Dominic Trojer
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Melanie Schürz
- Paris-Lodron University of Salzburg, Department of Biosciences and Medical Biology,, Salzburg, 5020,Austria
- Ludwig Boltzmann Institute for Nanovesicular Precision Medicine at the Paris Lodron University Salzburg, 5020, Austria
| | - Hicham Mahboubi
- Friedrich Miescher Institute for Biomedical Research, Department Genomic Regulation, Basel, 4056, Switzerland
| | - Cornelia Handl
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Nicolas Pizzato
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Martin Pfeifer
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Ruxandra Dafinca
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences, Oxford, OX3 9DU, United Kingdom
| | - Hans Voshol
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Elisa Giorgetti
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Carole Manneville
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Isabelle P M Garnier
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Matthias Müller
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Fanning Zeng
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Kathrin Buntin
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Roger Markwalder
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Harald Schröder
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Jan Weiler
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Dora Khar
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Tim Schuhmann
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Paul J Groot-Kormelink
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Caroline Gubser Keller
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Pierre Farmer
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Angela MacKay
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Giovanni D’Ario
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Claudia Merkl
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Michael Schebesta
- Novartis Institutes for Biomedical Research, Department Discovery Sciences, Cambridge, MA02139, United States
| | - Marc Hild
- Novartis Institutes for Biomedical Research, Department Discovery Sciences, Cambridge, MA02139, United States
| | - Fiona Elwood
- Novartis Institutes for Biomedical Research, Department Discovery Sciences, Cambridge, MA02139, United States
| | - Björn F Vahsen
- ETH Zürich, Department of Biology, Institute f. Molekularbiol.u.Biophysik, Zürich, 8093, Switzerland
| | - Nina Ripin
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
- ETH Zürich, Department of Biology, Institute f. Molekularbiol.u.Biophysik, Zürich, 8093, Switzerland
| | - Antoine Clery
- ETH Zürich, Department of Biology, Institute f. Molekularbiol.u.Biophysik, Zürich, 8093, Switzerland
| | - Frederic Allain
- ETH Zürich, Department of Biology, Institute f. Molekularbiol.u.Biophysik, Zürich, 8093, Switzerland
| | - Mark Labow
- Novartis Institutes for Biomedical Research, Department Discovery Sciences, Cambridge, MA02139, United States
| | - Daniela Gabriel
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Department Genomic Regulation, Basel, 4056, Switzerland
| | - Kevin Talbot
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences, Oxford, OX3 9DU, United Kingdom
| | - Mark Nash
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Jürg Hunziker
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Nicole C Meisner-Kober
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
- Paris-Lodron University of Salzburg, Department of Biosciences and Medical Biology,, Salzburg, 5020,Austria
- Ludwig Boltzmann Institute for Nanovesicular Precision Medicine at the Paris Lodron University Salzburg, 5020, Austria
| |
Collapse
|
2
|
Feng Q, Lin Z, Zhao D, Li M, Yang S, Xiang AP, Ye C, Yao C. Functional inhibition of core spliceosomal machinery activates intronic premature cleavage and polyadenylation of pre-mRNAs. Cell Rep 2025; 44:115376. [PMID: 40019833 DOI: 10.1016/j.celrep.2025.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
The catalytic role of U6 snRNP in pre-mRNA splicing has been well established. In this study, we utilize an antisense morpholino oligonucleotide (AMO) specifically targeting catalytic sites of U6 snRNA to achieve functional knockdown of U6 snRNP in HeLa cells. The data show a significant increase in global intronic premature cleavage and polyadenylation (PCPA) events, similar to those observed with U1 AMO treatment, as demonstrated by mRNA 3'-seq analysis. Mechanistically, we provide evidence that U6 AMO-mediated splicing inhibition might be the driving force for PCPA as application of another specific AMO targeting U2 snRNP results in similar global PCPA effects. Together with our recently published findings that demonstrate the global inhibitory effect of U4 snRNP on intronic PCPA, our data highlight the critical role of splicing in suppressing intronic PCPA and support a model in which splicing and polyadenylation may compete with each other within introns during co-transcriptional mRNA processing.
Collapse
Affiliation(s)
- Qiumin Feng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zejin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Danhui Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengzhao Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sheng Yang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Wang Z, Sun Y, Zhang Y, Zhang Y, Zhang R, Li C, Liu X, Pan F, Qiao D, Shi X, Zhang B, Xu N, Bottillo I, Shao L. Identification of seven variants in the col4a1 gene that alter RNA splicing by minigene assay. Clin Genet 2024; 106:336-341. [PMID: 38747114 DOI: 10.1111/cge.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 08/13/2024]
Abstract
Type IV collagen is an integral component of basement membranes. Mutations in COL4A1, one of the key genes encoding Type IV collagen, can result in a variety of diseases. It is clear that a significant proportion of mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. Here, we analyzed exonic mutations and intronic mutations described in the COL4A1 gene using bioinformatics programs and identified candidate mutations that may alter the normal splicing pattern through a minigene system. We identified seven variants that induce splicing alterations by disrupting normal splice sites, creating new ones, or altering splice regulatory elements. These mutations are predicted to impact protein function. Our results help in the correct molecular characterization of variants in COL4A1 and may help develop more personalized treatment options.
Collapse
Affiliation(s)
- Zhi Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yan Sun
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yiyin Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ran Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Changying Li
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xuyan Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Fengjiao Pan
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Dan Qiao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Bingying Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ning Xu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Irene Bottillo
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Leping Shao
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Bouton L, Ecoutin A, Malard F, Campagne S. Small molecules modulating RNA splicing: a review of targets and future perspectives. RSC Med Chem 2024; 15:1109-1126. [PMID: 38665842 PMCID: PMC11042171 DOI: 10.1039/d3md00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.
Collapse
Affiliation(s)
- Léa Bouton
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Agathe Ecoutin
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| |
Collapse
|
6
|
Fukumura K, Sperotto L, Seuß S, Kang HS, Yoshimoto R, Sattler M, Mayeda A. SAP30BP interacts with RBM17/SPF45 to promote splicing in a subset of human short introns. Cell Rep 2023; 42:113534. [PMID: 38065098 DOI: 10.1016/j.celrep.2023.113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
Human pre-mRNA splicing requires the removal of introns with highly variable lengths, from tens to over a million nucleotides. Therefore, mechanisms of intron recognition and splicing are likely not universal. Recently, we reported that splicing in a subset of human short introns with truncated polypyrimidine tracts depends on RBM17 (SPF45), instead of the canonical splicing factor U2 auxiliary factor (U2AF) heterodimer. Here, we demonstrate that SAP30BP, a factor previously implicated in transcriptional control, is an essential splicing cofactor for RBM17. In vitro binding and nuclear magnetic resonance analyses demonstrate that a U2AF-homology motif (UHM) in RBM17 binds directly to a newly identified UHM-ligand motif in SAP30BP. We show that this RBM17-SAP30BP interaction is required to specifically recruit RBM17 to phosphorylated SF3B1 (SF3b155), a U2 small nuclear ribonucleoprotein (U2 snRNP) component in active spliceosomes. We propose a mechanism for splicing in a subset of short introns, in which SAP30BP guides RBM17 in the assembly of active spliceosomes.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Luca Sperotto
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Stefanie Seuß
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 673-0101, Japan
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|