1
|
Leuti A, Fava M, Forte G, Pellegrini N, Oddi S, Scipioni L, Gomez EA, Dalli J, Maccarrone M. The endocannabinoid anandamide activates pro-resolving pathways in human primary macrophages by engaging both CB 2 and GPR18 receptors. FASEB J 2024; 38:e23675. [PMID: 38801406 DOI: 10.1096/fj.202301325r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Resolution of inflammation is the cellular and molecular process that protects from widespread and uncontrolled inflammation and restores tissue function in the aftermath of acute immune events. This process is orchestrated by specialized pro-resolving mediators (SPM), a class of bioactive lipids able to reduce immune activation and promote removal of tissue debris and apoptotic cells by macrophages. Although SPMs are the lipid class that has been best studied for its role in facilitating the resolution of self-limited inflammation, a number of other lipid signals, including endocannabinoids, also exert protective immunomodulatory effects on immune cells, including macrophages. These observations suggest that endocannabinoids may also display pro-resolving actions. Interestingly, the endocannabinoid anandamide (AEA) is not only known to bind canonical type 1 and type 2 cannabinoid receptors (CB1 and CB2) but also to engage SPM-binding receptors such as GPR18. This suggests that AEA may also contribute to the governing of resolution processes. In order to interrogate this hypothesis, we investigated the ability of AEA to induce pro-resolving responses by classically-activated primary human monocyte-derived macrophages (MoDM). We found that AEA, at nanomolar concentration, enhances efferocytosis in MoDMs in a CB2- and GPR18-dependent manner. Using lipid mediator profiling, we also observed that AEA modulates SPM profiles in these cells, including levels of resolvin (Rv)D1, RvD6, maresin (MaR)2, and RvE1 in a CB2-dependent manner. AEA treatment also modulated the gene expression of SPM enzymes involved in both the formation and further metabolism of SPM such as 5-lipoxygenase and 15-Prostaglandin dehydrogenase. Our findings show, for the first time, a direct effect of AEA on the regulation of pro-resolving pathways in human macrophages. They also provide new insights into the complex interactions between different lipid pathways in activation of pro-resolving responses contributing to the reestablishment of homeostasis in the aftermath of acute inflammation.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Marina Fava
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Giulia Forte
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Niccolò Pellegrini
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Lucia Scipioni
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Esteban A Gomez
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Mauro Maccarrone
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Lipscomb M, Walis S, Marinello M, Mena HA, MacNamara KC, Spite M, Fredman G. Resolvin D2 limits atherosclerosis progression via myeloid cell-GPR18. FASEB J 2024; 38:e23555. [PMID: 38498346 DOI: 10.1096/fj.202302336rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Dysregulated inflammation-resolution programs are associated with atherosclerosis progression. Resolvins, in part, mediate inflammation-resolution programs. Indeed, Resolvin D2 (RvD2) activates GPR18, a G-protein-coupled receptor, and limits plaque progression, though the cellular targets of RvD2 remain unknown. Here, we developed a humanized GPR18 floxed ("fl/fl") and a myeloid (Lysozyme M Cre) GPR18 knockout (mKO) mouse. We functionally validated this model by assessing efferocytosis in bone marrow-derived macrophages (BMDMs) and found that RvD2 enhanced efferocytosis in the fl/fl, but not in the mKO BMDMs. To understand the functions of RvD2-GPR18 in atherosclerosis, we performed a bone marrow transfer of fl/fl or mKO bone marrow into Ldlr-/- recipients. For these experiments, we treated each genotype with either Vehicle/PBS or RvD2 (25 ng/mouse, 3 times/week for 3 weeks). Myeloid loss of GPR18 resulted in significantly more necrosis, increased cleaved caspase-3+ cells and decreased percentage of Arginase-1+ -Mac2+ cells without a change in overall Mac2+ plaque macrophages, compared with fl/fl➔Ldlr-/- transplanted mice. RvD2 treatment decreased plaque necrosis, the percent of cleaved caspase-3+ cells and increased the percent of Arginase-1+ -Mac2+ cells in fl/fl➔Ldlr-/- mice, but not in the mKO➔Ldlr-/- transplanted mice. These results suggest that GPR18 plays a causal role in limiting atherosclerosis progression and that RvD2's ability to limit plaque necrosis is in part dependent on myeloid GRP18.
Collapse
Affiliation(s)
- Masharh Lipscomb
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Sean Walis
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Michael Marinello
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Hebe Agustina Mena
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine C MacNamara
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|