1
|
Yemele OM, Zhao Z, Ngaba MJY, Ymele E, Xia L, Xiaorou W, Opoku PA. A global systematic review and meta-analysis of innovative technologies for 1,2,4-trichlorobenzene remediation in soil and water. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:217. [PMID: 40397035 DOI: 10.1007/s10653-025-02515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/15/2025] [Indexed: 05/22/2025]
Abstract
The 1,2,4-trichlorobenzene (1,2,4-TCB) is a persistent organic pollutant, which poses a serious concern due to its long-lasting and detrimental impact on soil and water quality. This study uses meta-analysis to investigate the effectiveness of various remediation methods for 1,2,4-TCB in water and soil. In water, the intimate coupling of photocatalysis and biodegradation (ICPB) demonstrated the highest removal rate (80%), followed by photocatalysis (PC, 69%), bioremediation (B, 53%), and photolysis (P, 42%). Optimal conditions for 1,2,4-TCB removal in water included short remediation times (< 5 days), higher temperatures (≥ 25 °C), neutral pH, and specific free radicals (H+ > •OH > •O2-). In soil, short-term remediation methods and suspended cultures showed higher removal rates. Topsoil depth layers (≤ 10 cm) exhibited better removal rates than subsoil (> 10 cm). Key factors influencing remediation effectiveness in water were hydraulic retention time (HRT), salinity, and water table depth, while in soil, remediation time and soil depth layer were the most significant. This research highlights the importance of optimizing remediation methods and environmental conditions to remove 1,2,4-TCB from contaminated sites effectively. Further investigation is needed to understand the underlying mechanisms and optimal conditions for these remediation methods, particularly in soil. Effective remediation of 1,2,4-TCB requires a tailored approach considering specific environmental conditions and challenges in water and soil. The ICPB shows promise, especially in aquatic environments. However, further research is essential to optimize these methods, particularly for soil remediation.
Collapse
Affiliation(s)
- Olive Mekontchou Yemele
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Mbezele Junior Yannick Ngaba
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, P.R. China
- Higher Technical Teacher' Training College of Ebolowa, University of Ebolowa (HTTTC), 886, Ebolowa, Cameroon
| | - Ervice Ymele
- Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Liling Xia
- School of Computer & Software, Nanjing Institute of Industry Technology, Nanjing, 210016, P.R. China
| | - Wang Xiaorou
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Prince Atta Opoku
- School of Environment, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin, P.R. China
| |
Collapse
|
2
|
Wang Y, Luo Y, Tan Z, Lu X, Zhao L, Usman Ghani M, Sun W, Ren Y. Biotransformation of chloramphenicol by enriched bacterial consortia and the newly isolated bacterial strain Bordetella sp. C3: Detoxifying biotransformation pathway and its potential application in agriculture. BIORESOURCE TECHNOLOGY 2025; 415:131713. [PMID: 39477164 DOI: 10.1016/j.biortech.2024.131713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Limited sources of consortia/pure cultures that degrade chloramphenicol (CAP) and the incomplete biodegradation profiles of CAP hinder the remediation of CAP pollution. In this study, two CAP-degrading consortia (designated as CM and PM) were obtained after long-term acclimation, and Alcaligenaceae and Enterobacteriaceae enriched in CM and PM, respectively. Notably, Bordetella sp. C3, a new isolate belonging to the family Alcaligenaceae, was isolated from CM and capable of degrading 85.7 % 10 mg/L CAP at 30 ℃ and pH 7 in 10 d. The biotransformation of CAP by Bordetella sp. C3 was proposed as a detoxification process, including a novel initial degradation pathway: dechlorination of CAP into AP. Strain C3 can also function as a plant growth-promoting bacterium that solubilizes inorganic phosphate and produces siderophores and indole-3-acetic acid (IAA). This study expands our knowledge of the migration and transformation pathways of CAP and microbial community profiles during acclimatization.
Collapse
Affiliation(s)
- Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yujiang Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zewen Tan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Xingjun Lu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Li Zhao
- China Water Resources Pearl River Planning Surveying & Designing Co., Ltd., Guangzhou 510610, China
| | - Muhammad Usman Ghani
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Youhua Ren
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
4
|
Nazarova EA, Egorova DO, Anan’ina LN, Korsakova ES, Plotnikova EG. New Associations of Aerobic Bacteria that Actively Decompose Lindane. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Vargas-Suárez M, Savín-Gámez A, Domínguez-Malfavón L, Sánchez-Reyes A, Quirasco-Baruch M, Loza-Tavera H. Exploring the polyurethanolytic activity and microbial composition of landfill microbial communities. Appl Microbiol Biotechnol 2021; 105:7969-7980. [PMID: 34554272 DOI: 10.1007/s00253-021-11571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The microbial composition of polyurethane degrading communities has been barely addressed, and it is unknown if microenvironmental conditions modify its composition, affecting its biodegradative capacity. The polyurethanolytic activity and taxonomic composition of five microbial communities, selected by enrichment in the polyether-polyurethane-acrylic (PE-PU-A) coating PolyLack®, from deteriorated PU foams collected at different microenvironments in a municipal landfill (El Bordo Poniente, BP) were explored. All BP communities grew similarly in PolyLack® as the sole carbon source, although BP1, BP4, and BP5 showed better performance than BP2 and BP7. FTIR spectroscopy showed that ester, urethane, ether, aromatic and aliphatic groups, and the acrylate component were targets of the biodegradative activity. Extracellular esterase activity was higher at 5 days of cultivation and decreased at 21 days, while urease activity showed the opposite. Microbial composition analysis, assessed by 16S rDNA V3 region PCR-DGGE, revealed a preponderance of Rhizobiales and Micrococcales. The reported PU-degrading genera Paracoccus, Acinetobacter, and Pseudomonas were identified. In contrast, Advenella, Bordetella, Microbacterium, Castellaniella, and Populibacterium, some of them xenobiotics degraders, can be considered potentially PU-degrading genera. Correspondence analysis identified independent groups for all communities, except the BP4 and BP5. Although partial taxonomic redundancy was detected, unique OTUs were identified, e.g., three members of the Weeksellaceae family were present only in the BP4/BP5 group. These results suggest that the microenvironmental conditions where the landfill microbial communities were collected shaped their taxonomical composition, impacting their PE-PU biodegradative capacities. These BP communities represent valuable biological material for the treatment of PU waste and other xenobiotics. KEY POINTS: • Landfill microbial communities display slightly different capacities for growing in polyether-polyurethane-acrylic. • Ester, urethane, ether, aromatic, aliphatic, and acrylate groups were attacked. • Esterase activity was more significant at early culture times while urease activity at latter. • Landfill microenvironments shape partial taxonomical redundancy in the communities. • Best communities' performance seems to be related to unique members' composition.
Collapse
Affiliation(s)
- Martín Vargas-Suárez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Alba Savín-Gámez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Lilianha Domínguez-Malfavón
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Maricarmen Quirasco-Baruch
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Rivera I, Linz B, Harvill ET. Evolution and Conservation of Bordetella Intracellular Survival in Eukaryotic Host Cells. Front Microbiol 2020; 11:557819. [PMID: 33178148 PMCID: PMC7593398 DOI: 10.3389/fmicb.2020.557819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022] Open
Abstract
The classical bordetellae possess several partially characterized virulence mechanisms that are studied in the context of a complete extracellular life cycle in their mammalian hosts. Yet, classical bordetellae have repeatedly been reported within dendritic cells (DCs) and alveolar macrophages in clinical samples, and in vitro experiments convincingly demonstrate that the bacteria can survive intracellularly within mammalian phagocytic cells, an ability that appears to have descended from ancestral progenitor species that lived in the environment and acquired the mechanisms to resist unicellular phagocytic predators. Many pathogens, including Mycobacterium tuberculosis, Salmonella enterica, Francisella tularensis, and Legionella pneumophila, are known to parasitize and multiply inside eukaryotic host cells. This strategy provides protection, nutrients, and the ability to disseminate systemically. While some work has been dedicated at characterizing intracellular survival of Bordetella pertussis, there is limited understanding of how this strategy has evolved within the genus Bordetella and the contributions of this ability to bacterial pathogenicity, evasion of host immunity as well as within and between-host dissemination. Here, we explore the mechanisms that control the metabolic changes accompanying intracellular survival and how these have been acquired and conserved throughout the evolutionary history of the Bordetella genus and discuss the possible implications of this strategy in the persistence and reemergence of B. pertussis in recent years.
Collapse
Affiliation(s)
- Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan. Appl Microbiol Biotechnol 2019; 103:7261-7274. [PMID: 31346684 DOI: 10.1007/s00253-019-10032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 01/03/2023]
Abstract
Bacteria and fungi were isolated from eight different soil samples from different regions in Kazakhstan contaminated with oil or salt or aromatic compounds. For the isolation of the organisms, we used, on the one hand, typical hydrocarbons such as the well utilizable aliphatic alkane tetradecane, the hardly degradable multiple-branched alkane pristane, and the biaromatic compound biphenyl as enrichment substrates. On the other hand, we also used oxygenated derivatives of alicyclic and monoaromatic hydrocarbons, such as cyclohexanone and p-tert-amylphenol, which are known as problematic pollutants. Seventy-nine bacterial and fungal strains were isolated, and 32 of them that were clearly able to metabolize some of these substrates, as tested by HPLC-UV/Vis and GC-MS analyses, were characterized taxonomically by DNA sequencing. Sixty-two percent of the 32 isolated strains from 14 different genera belong to well-described hydrocarbon degraders like some Rhodococci as well as Acinetobacter, Pseudomonas, Fusarium, Candida, and Yarrowia species. However, species of the bacterial genus Curtobacterium, the yeast genera Lodderomyces and Pseudozyma, as well as the filamentous fungal genera Purpureocillium and Sarocladium, which have rarely been described as hydrocarbon degrading, were isolated and shown to be efficient tetradecane degraders, mostly via monoterminal oxidation. Pristane was exclusively degraded by Rhodococcus isolates. Candida parapsilosis, Fusarium oxysporum, Fusarium solani, and Rhodotorula mucilaginosa degraded cyclohexanone, and in doing so accumulate ε-caprolactone or hexanedioic acid as metabolites. Biphenyl was transformed by Pseudomonas/Stenotrophomonas isolates. When p-tert-amylphenol was used as growth substrate, none of the isolated strains were able to use it.
Collapse
|
8
|
Degradation of chlorotoluenes and chlorobenzenes by the dual-species biofilm of Comamonas testosteroni strain KT5 and Bacillus subtilis strain DKT. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1415-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
9
|
How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:1-17. [PMID: 31321755 DOI: 10.1007/5584_2019_401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be highly informative. In this chapter we discuss the evolution of B. pertussis, including how vaccination is changing the circulating B. pertussis population at the gene-level, and how new sequencing technologies are revealing previously unknown levels of inter- and intra-strain variation at the genome-level.
Collapse
|
10
|
Brickman TJ, Armstrong SK. The Bordetella bronchiseptica nic locus encodes a nicotinic acid degradation pathway and the 6-hydroxynicotinate-responsive regulator BpsR. Mol Microbiol 2018; 108:397-409. [PMID: 29485696 DOI: 10.1111/mmi.13943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2018] [Indexed: 01/01/2023]
Abstract
The classical Bordetella species use amino acids as carbon sources and can catabolize organic acids and tricarboxylic acid cycle intermediates. They are also auxotrophic for nicotinamide adenine dinucleotide (NAD) pathway precursors such as nicotinic acid. Bordetellae have a putative nicotinate catabolism gene locus highly similar to that characterized in Pseudomonas putida KT2440. This study determined the distribution of the nic genes among Bordetella species and analyzed the regulation of this nicotinic acid degradation system. Transcription of the Bordetella bronchiseptica nicC gene was repressed by the NicR ortholog, BpsR, previously shown to regulate extracellular polysaccharide synthesis genes. nicC expression was derepressed by nicotinic acid or by the first product of the degradation pathway, 6-hydroxynicotinic acid, which was shown to be the inducer. Results using mutants with either a hyperactivated pathway or an inactivated pathway showed a marked effect on growth on nicotinic acid that indicated this degradation pathway influences NAD biosynthesis. Pathway dysregulation also affected Bordetella BvgAS-mediated virulence gene regulation, demonstrating that fluctuation of intracellular nicotinic acid pools impacts Bvg phase transition responses.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455-1507, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455-1507, USA
| |
Collapse
|
11
|
Patel DK, Tipre DR, Dave SR. Enzyme mediated bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils. Arch Microbiol 2017; 199:839-851. [PMID: 28289787 DOI: 10.1007/s00203-017-1356-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 12/26/2022]
Abstract
Used lubricating oil (ULO) is a widespread contaminant, particularly throughout tropical regions, and may be a candidate for bioremediation. However, little is known about the biodegradation potential or basic microbial ecology of ULO-contaminated soils. This study aims to determine the effects of used ULO on bacterial community structure and diversity. Using a combination of culture-based (agar plate counts) and molecular techniques (16S rRNA gene sequencing and DGGE), we investigated changes in soil bacterial communities from three different ULO-contaminated soils collected from motorcycle mechanical workshops (soil A, B, and C). We further explored the relationship between bacterial community structure, physiochemical soil parameters, and ULO composition in three ULO-contaminated soils. Results indicated that the three investigated soils had different community structures, which may be a result of the different ULO characteristics and physiochemical soil parameters of each site. Soil C had the highest ULO concentration and also the greatest diversity and richness of bacteria, which may be a result of higher nutrient retention, organic matter and cation exchange capacity, as well as freshness of oil compared to the other soils. In soils A and B, Proteobacteria (esp. Gammaproteobacteria) dominated the bacterial community, and in soil C, Actinobacteria and Firmicutes dominated. The genus Enterobacter, a member of the class Gammaproteobacteria, is known to include ULO-degraders, and this genus was the only one found in all three soils, suggesting that it could play a key role in the in situ degradation of ULO-contaminated tropical Thai soils. This study provides insights into our understanding of soil microbial richness, diversity, composition, and structure in tropical ULO-contaminated soils, and may be useful for the development of strategies to improve bioremediation.
Collapse
|
13
|
Dong W, Liu K, Wang F, Xin F, Zhang W, Zhang M, Wu H, Ma J, Jiang M. The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure. Biodegradation 2017; 28:181-194. [PMID: 28265780 DOI: 10.1007/s10532-017-9787-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0-10.0) or temperature (20-42 °C). HPLC-MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
14
|
Hamidou Soumana I, Linz B, Harvill ET. Environmental Origin of the Genus Bordetella. Front Microbiol 2017; 8:28. [PMID: 28174558 PMCID: PMC5258731 DOI: 10.3389/fmicb.2017.00028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
Members of the genus Bordetella include human and animal pathogens that cause a variety of respiratory infections, including whooping cough in humans. Despite the long known ability to switch between a within-animal and an extra-host lifestyle under laboratory growth conditions, no extra-host niches of pathogenic Bordetella species have been defined. To better understand the distribution of Bordetella species in the environment, we probed the NCBI nucleotide database with the 16S ribosomal RNA (16S rRNA) gene sequences from pathogenic Bordetella species. Bacteria of the genus Bordetella were frequently found in soil, water, sediment, and plants. Phylogenetic analyses of their 16S rRNA gene sequences showed that Bordetella recovered from environmental samples are evolutionarily ancestral to animal-associated species. Sequences from environmental samples had a significantly higher genetic diversity, were located closer to the root of the phylogenetic tree and were present in all 10 identified sequence clades, while only four sequence clades possessed animal-associated species. The pathogenic bordetellae appear to have evolved from ancestors in soil and/or water. We show that, despite being animal-adapted pathogens, Bordetella bronchiseptica, and Bordetella hinzii have preserved the ability to grow and proliferate in soil. Our data implicate soil as a probable environmental origin of Bordetella species, including the animal-pathogenic lineages. Soil may further constitute an environmental niche, allowing for persistence and dissemination of the bacterial pathogens. Spread of pathogenic bordetellae from an environmental reservoir such as soil may potentially explain their wide distribution as well as frequent disease outbreaks that start without an obvious infectious source.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- Department of Infectious Diseases, University of GeorgiaAthens, GA, USA; Center for Vaccines and Immunology, University of GeorgiaAthens, GA, USA
| | - Bodo Linz
- Center for Vaccines and Immunology, University of GeorgiaAthens, GA, USA; Department of Veterinary and Biomedical Sciences, Pennsylvania State UniversityUniversity Park, PA, USA
| | - Eric T Harvill
- Department of Infectious Diseases, University of GeorgiaAthens, GA, USA; Center for Vaccines and Immunology, University of GeorgiaAthens, GA, USA; Department of Veterinary and Biomedical Sciences, Pennsylvania State UniversityUniversity Park, PA, USA
| |
Collapse
|
15
|
Rath SN, Ray M, Pattnaik A, Pradhan SK. Drug Target Identification and Elucidation of Natural Inhibitors for Bordetella petrii: An In Silico Study. Genomics Inform 2016; 14:241-254. [PMID: 28154518 PMCID: PMC5287131 DOI: 10.5808/gi.2016.14.4.241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 11/20/2022] Open
Abstract
Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.
Collapse
Affiliation(s)
- Surya Narayan Rath
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Manisha Ray
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Animesh Pattnaik
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Sukanta Kumar Pradhan
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| |
Collapse
|
16
|
Tazato N, Handa Y, Nishijima M, Kigawa R, Sano C, Sugiyama J. Novel environmental species isolated from the plaster wall surface of mural paintings in the Takamatsuzuka tumulus: Bordetella muralis sp. nov., Bordetella tumulicola sp. nov. and Bordetella tumbae sp. nov. Int J Syst Evol Microbiol 2015; 65:4830-4838. [PMID: 26443672 DOI: 10.1099/ijsem.0.000655] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten strains of Gram-stain-negative, non-spore-forming, non-motile coccobacilli were isolated from the plaster wall surface of 1300-year-old mural paintings inside the stone chamber of the Takamatsuzuka tumulus in Asuka village (Asuka-mura), Nara Prefecture, Japan. Based on 16S rRNA gene sequence analysis of the isolates, they belonged to the proteobacterial genus Bordetella (class Betaproteobacteria) and could be separated into three groups representing novel lineages within the genus Bordetella. Three isolates were selected, one from each group, and identified carefully using a polyphasic approach. The isolates were characterized by the presence of Q-8 as their major ubiquinone system and C16 : 0 (30.0-41.8 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.1-27.0 %) and C17 : 0 cyclo (10.8-23.8 %) as the predominant fatty acids. The major hydroxy fatty acids were C12 : 0 2-OH and C14 : 0 2-OH. The DNA G+C content was 59.6-60.0 mol%. DNA-DNA hybridization tests confirmed that the isolates represented three separate novel species, for which the names Bordetella muralis sp. nov. (type strain T6220-3-2bT = JCM 30931T = NCIMB 15006T), Bordetella tumulicola sp. nov. (type strain T6517-1-4bT = JCM 30935T = NCIMB 15007T) and Bordetella tumbae sp. nov. (type strain T6713-1-3bT = JCM 30934T = NCIMB 15008T) are proposed. These results support previous evidence that members of the genus Bordetella exist in the environment and may be ubiquitous in soil and/or water.
Collapse
Affiliation(s)
- Nozomi Tazato
- Technical Department, TechnoSuruga Laboratory Co. Ltd, 330 Nagasaki, Shimizu-ku, Shizuoka-shi, Shizuoka 424-0065, Japan
| | - Yutaka Handa
- Technical Department, TechnoSuruga Laboratory Co. Ltd, 330 Nagasaki, Shimizu-ku, Shizuoka-shi, Shizuoka 424-0065, Japan
| | - Miyuki Nishijima
- Technical Department, TechnoSuruga Laboratory Co. Ltd, 330 Nagasaki, Shimizu-ku, Shizuoka-shi, Shizuoka 424-0065, Japan
| | - Rika Kigawa
- Independent Administrative Institution, National Research Institute for Cultural Properties, Tokyo, 13-43 Ueno-Koen, Taito-ku, Tokyo 110-8713, Japan
| | - Chie Sano
- Independent Administrative Institution, National Research Institute for Cultural Properties, Tokyo, 13-43 Ueno-Koen, Taito-ku, Tokyo 110-8713, Japan
| | - Junta Sugiyama
- TechnoSuruga Laboratory Co., Ltd, Chiba Branch Office, No. 4 Sanko Bldg., 3-1532-13 Hasama-cho, Funabashi-shi, Chiba 274-0822, Japan
| |
Collapse
|
17
|
|
18
|
Abstract
A case of Bordetella petrii septic arthritis and osteomyelitis in an elbow resulted from a dirt bike accident in Hawaii. Two months of intravenous antibiotics and repeated surgeries were required to cure this infection. Our case, and literature review, suggests that extended-spectrum penicillins, tetracycline, and trimethoprim-sulfamethoxazole are good treatment options.
Collapse
|
19
|
Dionisi D. Potential and Limits of Biodegradation Processes for the Removal of Organic Xenobiotics from Wastewaters. CHEMBIOENG REVIEWS 2014. [DOI: 10.1002/cben.201300008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Characterization of Fluoroglycofen Ethyl Degradation by Strain Mycobacterium phocaicum MBWY-1. Curr Microbiol 2011; 62:1710-7. [DOI: 10.1007/s00284-011-9918-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
|
21
|
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010; 5:e10433. [PMID: 20463976 PMCID: PMC2864759 DOI: 10.1371/journal.pone.0010433] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022] Open
Abstract
Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.
Collapse
Affiliation(s)
- Paul J Janssen
- Molecular and Cellular Biology, Belgian Nuclear Research Center SCK*CEN, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Resemblance and divergence: the “new” members of the genus Bordetella. Med Microbiol Immunol 2010; 199:155-63. [DOI: 10.1007/s00430-010-0148-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Indexed: 10/19/2022]
|
23
|
Finley SD, Broadbelt LJ, Hatzimanikatis V. In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC SYSTEMS BIOLOGY 2010; 4:7. [PMID: 20122273 PMCID: PMC2830930 DOI: 10.1186/1752-0509-4-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 02/02/2010] [Indexed: 11/10/2022]
Abstract
Background Bioremediation offers a promising pollution treatment method in the reduction and elimination of man-made compounds in the environment. Computational tools to predict novel biodegradation pathways for pollutants allow one to explore the capabilities of microorganisms in cleaning up the environment. However, given the wealth of novel pathways obtained using these prediction methods, it is necessary to evaluate their relative feasibility, particularly within the context of the cellular environment. Results We have utilized a computational framework called BNICE to generate novel biodegradation routes for 1,2,4-trichlorobenzene (1,2,4-TCB) and incorporated the pathways into a metabolic model for Pseudomonas putida. We studied the cellular feasibility of the pathways by applying metabolic flux analysis (MFA) and thermodynamic constraints. We found that the novel pathways generated by BNICE enabled the cell to produce more biomass than the known pathway. Evaluation of the flux distribution profiles revealed that several properties influenced biomass production: 1) reducing power required, 2) reactions required to generate biomass precursors, 3) oxygen utilization, and 4) thermodynamic topology of the pathway. Based on pathway analysis, MFA, and thermodynamic properties, we identified several promising pathways that can be engineered into a host organism to accomplish bioremediation. Conclusions This work was aimed at understanding how novel biodegradation pathways influence the existing metabolism of a host organism. We have identified attractive targets for metabolic engineers interested in constructing a microorganism that can be used for bioremediation. Through this work, computational tools are shown to be useful in the design and evaluation of novel xenobiotic biodegradation pathways, identifying cellularly feasible degradation routes.
Collapse
Affiliation(s)
- Stacey D Finley
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
24
|
Finley SD, Broadbelt LJ, Hatzimanikatis V. Computational framework for predictive biodegradation. Biotechnol Bioeng 2010; 104:1086-97. [PMID: 19650084 DOI: 10.1002/bit.22489] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As increasing amounts of anthropogenic chemicals are released into the environment, it is vital to human health and the preservation of ecosystems to evaluate the fate of these chemicals in the environment. It is useful to predict whether a particular compound is biodegradable and if alternate routes can be engineered for compounds already known to be biodegradable. In this work, we describe a computational framework (called BNICE) that can be used for the prediction of novel biodegradation pathways of xenobiotics. The framework was applied to 4-chlorobiphenyl, phenanthrene, gamma-hexachlorocyclohexane, and 1,2,4-trichlorobenzene, compounds representing various classes of xenobiotics with known biodegradation routes. BNICE reproduced the proposed biodegradation routes found experimentally, and in addition, it expanded the biodegradation reaction networks through the generation of novel compounds and reactions. The novel reactions involved in the biodegradation of 1,2,4-trichlorobenzene were studied in depth, where pathway and thermodynamic analyses were performed. This work demonstrates that BNICE can be applied to generate novel pathways to degrade xenobiotic compounds that are thermodynamically feasible alternatives to known biodegradation routes and attractive targets for metabolic engineering.
Collapse
Affiliation(s)
- Stacey D Finley
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
25
|
|
26
|
Liang B, Lu P, Li H, Li R, Li S, Huang X. Biodegradation of fomesafen by strain Lysinibacillus sp. ZB-1 isolated from soil. CHEMOSPHERE 2009; 77:1614-1619. [PMID: 19846192 DOI: 10.1016/j.chemosphere.2009.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/27/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
The fomesafen degrading bacterium ZB-1 was isolated from contaminated agricultural soil, and identified as Lysinibacillus sp. based on the comparative analysis of 16S rRNA gene. The strain could utilize fomesafen as the sole carbon source for growth, and the total degradation rate was 81.32% after 7 d of inoculation in mineral salts medium. Strain ZB-1 could also degrade other diphenyl ethers including lactofen and fluoroglycofen. The optimum temperature for fomesafen degradation by strain ZB-1 was 30 degrees C. The effect of fomesafen concentration on degradation was also examined. Cell-free extract of strain ZB-1 was able to degrade fomesafen and other diphenyl ethers. Metabolism of fomesafen was accompanied by a transient accumulation of a metabolite identified as [N-[4-{4-(trifluoromethyl)phenoxy}-2-methanamidephenyl]acetamide] using liquid chromatography-mass spectrometry, thus indicating a metabolic pathway involving reduction, acetylation of nitro groups and dechlorination. The inoculation of strain ZB-1 to soil treated with fomesafen resulted in a higher degradation rate than in noninoculated soil regardless of the soil sterilized or nonsterilized.
Collapse
Affiliation(s)
- Bo Liang
- Key Laboratory for Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
27
|
Marco-Urrea E, Pérez-Trujillo M, Caminal G, Vicent T. Dechlorination of 1,2,3- and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor. JOURNAL OF HAZARDOUS MATERIALS 2009; 166:1141-1147. [PMID: 19179004 DOI: 10.1016/j.jhazmat.2008.12.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 11/05/2008] [Accepted: 12/03/2008] [Indexed: 05/27/2023]
Abstract
The degradation of 1,2,3-, 1,3,5- and 1,2,4-trichlorobenzene (TCB) by the white-rot fungus Trametes versicolor was studied. Time course experiments showed a degradation rate of 2.27 and 2.49 nmol d(-1)mg(-1) dry weight of biomass during the first 4d of incubation in cultures spiked with 6 mg L(-1) of 1,2,3- and 1,2,4-TCB, respectively. A high percent of degradation of 91.1% (1,2,3-TCB) and 79.6 (1,2,4-TCB) was obtained after 7d. However, T. versicolor was not able to degrade 1,3,5-TCB under the conditions tested. For a range of concentrations of 1,2,4-TCB between 6.5 and 23 mg L(-1), a complete dechlorination of the molecule was observed. Cytochrome P450 monooxygenase appears to be involve in the first step of 1,2,4-TCB degradation, as evidenced by marked inhibition of both dechlorination and degradation of 1,2,4-TCB in the presence of the known cyt P450 inhibitors 1-aminobenzotriazole and piperonyl butoxide. Four intermediates formed from 1,2,4-TCB degradation were detected the second day of incubation, which did not appear the seventh day: 2,3,5-trichloromuconate, its corresponding carboxymethylenebutenolide, 2- or 5-chloro-4-oxo-2-hexendioic acid and 2- or 5-chloro-5-hydroxy-4-oxo-2-pentenoic acid. Based on these results, a degradation pathway of 1,2,4-TCB through cyt P450 monooxygenase and epoxide hydrolase was proposed.
Collapse
Affiliation(s)
- Ernest Marco-Urrea
- Departament d'Enginyeria Química and Institut de Ciència i Tecnologia Ambiental, Escola Tècnica Superior d'Enginyeria (ETSE), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
28
|
Lechner M, Schmitt K, Bauer S, Hot D, Hubans C, Levillain E, Locht C, Lemoine Y, Gross R. Genomic island excisions in Bordetella petrii. BMC Microbiol 2009; 9:141. [PMID: 19615092 PMCID: PMC2717098 DOI: 10.1186/1471-2180-9-141] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 07/18/2009] [Indexed: 11/23/2022] Open
Abstract
Background Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs). These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds. Results During in vitro culture of Bordetella petrii colony variants appear frequently. We show that this variability can be attributed to the presence of a large number of metastable mobile genetic elements on its chromosome. In fact, the genome sequence of B. petrii revealed the presence of at least seven large genomic islands mostly encoding accessory metabolic functions involved in the degradation of aromatic compounds and detoxification of heavy metals. Four of these islands (termed GI1 to GI3 and GI6) are highly related to ICEclc of Pseudomonas knackmussii sp. strain B13. Here we present first data about the molecular characterization of these islands. We defined the exact borders of each island and we show that during standard culture of the bacteria these islands get excised from the chromosome. For all but one of these islands (GI5) we could detect circular intermediates. For the clc-like elements GI1 to GI3 of B. petrii we provide evidence that tandem insertion of these islands which all encode highly related integrases and attachment sites may also lead to incorporation of genomic DNA which originally was not part of the island and to the formation of huge composite islands. By integration of a tetracycline resistance cassette into GI3 we found this island to be rather unstable and to be lost from the bacterial population within about 100 consecutive generations. Furthermore, we show that GI3 is self transmissible and by conjugation can be transferred to B. bronchiseptica thus proving it to be an active integrative and conjugative element Conclusion The results show that phenotypic variation of B. petrii is correlated with the presence of genomic islands. Tandem integration of related islands may contribute to island evolution by the acquisition of genes originally belonging to the bacterial core genome. In conclusion, B. petrii appears to be the first member of the genus in which horizontal gene transfer events have massively shaped its genome structure.
Collapse
Affiliation(s)
- Melanie Lechner
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gross R, Guzman CA, Sebaihia M, dos Santos VAPM, Pieper DH, Koebnik R, Lechner M, Bartels D, Buhrmester J, Choudhuri JV, Ebensen T, Gaigalat L, Herrmann S, Khachane AN, Larisch C, Link S, Linke B, Meyer F, Mormann S, Nakunst D, Rückert C, Schneiker-Bekel S, Schulze K, Vorhölter FJ, Yevsa T, Engle JT, Goldman WE, Pühler A, Göbel UB, Goesmann A, Blöcker H, Kaiser O, Martinez-Arias R. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics 2008; 9:449. [PMID: 18826580 PMCID: PMC2572626 DOI: 10.1186/1471-2164-9-449] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 09/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. RESULTS In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. CONCLUSION The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.
Collapse
Affiliation(s)
- Roy Gross
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|