1
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
2
|
Chen Z, Jiang Y, Lai X, Zhu C, Zhang D, Wang H. Co-exposure to pentachlorophenol (PCP) and cadmium (Cd) triggers apoptosis-like cell death in Eschericia coli. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123640. [PMID: 38401637 DOI: 10.1016/j.envpol.2024.123640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Pentachlorophenol (PCP) - cadmium (Cd) complex pollution has been identified as a form of persistent soil pollution in south China, exerting detrimental impacts on the indigenous soil bacterial communities. Hence, it is worthwhile to investigate whether and how bacterial populations alter in response to these pollutants. In this study, Escherichia coli was used as a model bacterium. Results showed that PCP exposure caused bacterial cell membrane permeability changes, intracellular ROS elevation, and DNA fragmentation, and triggered apoptosis-like cell death at low exposure concentration and necrosis at high exposure concentration. Cd exposure caused severe oxidative damage and cell necrosis in the tested bacterial strain. The co-exposure to PCP and Cd elevated the ROS level, stimulated the bacterial caspase activity, and induced DNA fragmentation, thereby leading to an apoptosis-like cell death. In conclusion, PCP-Cd complex pollution can cause bacterial population to decrease through apoptosis-like cell death pathway. However, it is worth noting that the subpopulation survives under the complex pollution stress.
Collapse
Affiliation(s)
- Zhilan Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China.
| | - Yi Jiang
- School of Life and Health Sciences, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China
| | - Xuebin Lai
- School of Life and Health Sciences, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China
| | - Chenhong Zhu
- School of Life and Health Sciences, Hunan University of Science and Technology, Taoyuan Road, Yuhu District, Xiangtan, 411201, Hunan Province, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, China
| |
Collapse
|
3
|
Smith TR, Tay A, Koprivnikar J. Effects of insect host chemical secretions on the entomopathogenic nematode Steinernema carpocapsae. J Helminthol 2023; 97:e63. [PMID: 37522182 DOI: 10.1017/s0022149x23000469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Given the threat presented by parasites and pathogens, insects employ various defences to protect themselves against infection, including chemical secretions. The red flour beetle Tribolium castaneum releases a secretion containing the benzoquinones methyl-1,4-benzoquinone (MBQ) and ethyl-1,4-benzoquinone (EBQ) into the environment. These compounds have known antimicrobial effects; however, their role in defence against macroparasites is not known. Entomopathogenic nematodes, such as Steinernema carpocapsae, present a serious threat to insects, with successful infection leading to death. Thus, quinone-containing secretions may also aid in host defence. We tested how exposure to the individual components of this quinone secretion, as well as a mix at naturally-occurring proportions, affected the survival and thrashing behaviour of S. carpocapsae, as well as their virulence to a model host (Galleria mellonella). Exposure to high concentrations of MBQ and EBQ, as well as the quinone mix, significantly increased nematode death but did not consistently reduce thrashing, which would otherwise be expected given their toxicity. Rather, quinones may act as a host cue to S. carpocapsae by triggering increased activity. We found that exposure to quinones for 24 or 72 hours did not reduce nematode virulence, and surviving nematodes remained infective after non-lethal exposure. Our results indicate that quinone secretions likely serve as a defence against multiple infection threats by reducing S. carpocapsae survival, but further research is required to contextualize their roles by testing against other nematodes, as well as other helminths using insects as hosts.
Collapse
Affiliation(s)
- T R Smith
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - A Tay
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - J Koprivnikar
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
4
|
Liu S, Xu Y, Wang J, Wang X, Guan S, Zhang T. Long-circulating gambogic acid-loaded nanodiamond composite nanosystem with inhibition of cell migration for tumor therapy. J Colloid Interface Sci 2023; 646:732-744. [PMID: 37229991 DOI: 10.1016/j.jcis.2023.05.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Herein, ultra dispersed and stably suspended nanodiamonds (NDs) were demonstrated to have a high load capacity, sustained release, and ability to serve as a biocompatible vehicle for delivery anticancer drugs. NDs with size of 50-100 nm exhibited good biocompatibility in normal human liver (L-02) cells. In particular, 50 nm ND not only promoted the noticeable proliferation of the L-02 cells but also can effectively inhibited the migration of human liver carcinoma (HepG2) cells. The gambogic acid-loaded nanodiamond (ND/GA) complex assembled by π-π stacking exhibits ultrasensitive and apparent suppression efficiency on the proliferation of HepG2 cells through high internalization and less efflux compared to free GA. More importantly, the ND/GA system can significantly increase the intracellular reactive oxygen species (ROS) levels in HepG2 cells and thus induce the cell apoptosis. The increase in intracellular ROS levels causes damage to the mitochondrial membrane potential (MMP) and activates cysteinyl aspartate specific proteinase 3 (Caspase-3) and cysteinyl aspartate specific proteinase 9 (Caspase-9), which leads to the occurrence of apoptosis. In vivo experiments also confirmed that the ND/GA complex has a much higher anti-tumor capability than free GA. Thus, the current ND/GA system is promising for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| | - Yujia Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfeng Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuemin Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
5
|
Tu N, Liu H, Li W, Yao S, Liu J, Guo Z, Yu R, Du H, Li J. Quantitative structure-toxicity relationships of halobenzoquinone isomers on DNA reactivity and genotoxicity. CHEMOSPHERE 2022; 309:136763. [PMID: 36209857 DOI: 10.1016/j.chemosphere.2022.136763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/10/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Halobenzoquinones (HBQs) are an emerging class of drinking water disinfection byproducts that have been predicted as bladder carcinogens. However, data on the genotoxicity of HBQs are still scarce. This study performed a quantitative structure-toxicity relationship (QSTR) analysis of HBQ isomers on DNA reactivity and genotoxicity. The interaction of HBQs with calf thymus DNA (ct-DNA) was studied using multi-spectroscopic and molecular docking techniques. UV-Vis absorption spectra observed a significant hyperchromic effect with the increase of HBQ concentration. The fluorescence intensity of both probe-ct-DNA decreased with the increasing concentration of HBQs, indicating that the interaction mode between each HBQs and DNA was quite complicated, and there were both minor groove binding and intercalation binding. Molecular docking showed that HBQs interacted with DNA predominantly via hydrogen bond at guanine-rich areas in the minor groove of DNA. The genotoxicity of HBQs on human hepatocytes (L-02) was evaluated by micronucleus test, and the results showed that HBQs could cause significant chromosomal damage. The rank order of HBQ isomers on DNA reactivity and genotoxicity was 2,5-HBQs > their corresponding 2,6-HBQs. QSTR analysis found that dipole moment is the key structural descriptor influencing both DNA reactivity and genotoxicity of HBQ isomers. This study suggested that HBQs have caused genotoxicity which was influenced by their isomeric effects, warranting a comprehensive understanding of the genotoxic and carcinogenic risks associated with HBQs exposure.
Collapse
Affiliation(s)
- Nannan Tu
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Huan Liu
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Wanling Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Shuo Yao
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Juanli Liu
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoying Guo
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Rui Yu
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Haiying Du
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jinhua Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
6
|
Li Y, Ling J, Xue J, Huang J, Zhou X, Wang F, Hou W, Zhao J, Xu Y. Acute stress of the typical disinfectant glutaraldehyde-didecyldimethylammonium bromide (GD) on sludge microecology in livestock wastewater treatment plants: Effect and its mechanisms. WATER RESEARCH 2022; 227:119342. [PMID: 36399842 DOI: 10.1016/j.watres.2022.119342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Glutaraldehyde and didecyldimethylammonium bromide (GD) is a disinfectant widely used to prevent African swine fever (ASF) in livestock farms. However, the effect of residual GD on the activated sludge microbial ecology of receiving wastewater treatment plants (WWTPs) remains largely unknown. In this study, seven simulated systems were established to research the effects of GD on WWTPs and reveal the underlying mechanisms of microecological responses to GD at different concentrations. Both the nitrogen and carbon removal rates decreased with increasing GD concentrations, and nitrogen metabolism was inhibited more obviously, but the inhibition weakened with increasing stress duration. Microorganisms activated their SoxRS systems to promote ATP synthesis and electron transfer to support the hydrolysis and efflux of GD by producing a small number of ROS when exposed to GD at less than 1 mg/L. The overproduction of ROS led to a decrease of antioxidant and nitrogen removal enzyme activities, and upregulation of the porin gene increased the risk of GD entering the intracellular space upon exposure to GD at concentrations higher than 1 mg/L. Some denitrifiers survived via resistance and their basic capabilities of sugar metabolism and nitrogen assimilation. Notably, low concentrations of disinfectants could promote vertical and horizontal transfer of multiple resistance genes, especially aminoglycosides, among microorganisms, which might increase not only the adaptation capability of denitrifiers but also the risk to ecological systems. Therefore, the risks of disinfectants targeting ASF on ecology and health as well as the effects of disinfectant residuals from the COVID-19 epidemic should receive more attention.
Collapse
Affiliation(s)
- Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiayin Ling
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Jinghao Xue
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junwei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Waner Hou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbin Zhao
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Wu W, Liu Y, Li C, Zhuo F, Xu Z, Hong H, Sun H, Huang X, Yu X. Oxidative Stress Responses and Gene Transcription of Mice under Chronic-Exposure to 2,6-Dichlorobenzoquinone. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13801. [PMID: 36360680 PMCID: PMC9656914 DOI: 10.3390/ijerph192113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
2,6-Dichlorobenzoquinone (2,6-DCBQ), as an emerging disinfection by-production, was frequently detected and identified in the drinking water; however, limited information is available for the toxic effect of 2,6-DCBQ on mice. In the present study, adult mice were used to assess the impact of 2,6-DCBQ via measuring the responses of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), the key genes (Heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and glutamate-L-cysteine ligase catalytic subunit (GCLC)) in the Nrf2-keap1 pathway, and lipid peroxidation (malonaldehyde, MDA). Our results clearly indicated that 2,6-DCBQ decreased the activities of SOD and CAT, repressed the transcriptional levels of key genes in Nrf2-keap1 pathway, further caused oxidative damage on mice. These results provided evidence for assessing the threat of 2,6-DCBQ on human.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chunze Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Fangyu Zhuo
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zexiong Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, China
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316021, China
| |
Collapse
|
8
|
Song W, Wu K, Wu X, Lu Y, Li J, Li J, Cui M. The antiestrogen-like activity and reproductive toxicity of 2,6-DCBQ on female zebrafish upon sub-chronic exposure. J Environ Sci (China) 2022; 117:10-20. [PMID: 35725062 DOI: 10.1016/j.jes.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 06/15/2023]
Abstract
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ), an emerging water disinfection by-product, is widely detected in water resources. However, its potential effects on the reproductive system are largely unknown. Here, we investigated the long-term effects of 2,6-DCBQ on gonadal development by exposing zebrafish from 15 to 180 days postfertilization (dpf). Following exposure to 2,6-DCBQ (20 and 100 µg/L), female-specific effects including delayed puberty onset, retarded ovarian growth and breakdown of the zona radiata were observed, resulting in subfertility in adult females. Adverse effects in folliculogenesis disappeared two months after cessation of 2,6-DCBQ administration. In contrast, no adverse impacts were noted in male testes. The effects on females were associated with significant reduction in 17β-estradiol (E2) level, suggesting a role for 2,6-DCBQ in anti-estrogenic activity. E2 level change in blood was further supported by dysregulated expression of genes (cyp19a1a, fshb, kiss3, esr2b, vtg1, and vtg3) related to the hypothalamic-pituitary-gonad-liver (HPGL) axis. The present study demonstrates for the first time that 2,6-DCBQ induces reproductive impairments in female zebrafish through disrupting 17β-estradiol level.
Collapse
Affiliation(s)
- Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Kun Wu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiling Wu
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Yichun Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221000, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun 130025, China.
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221000, China.
| |
Collapse
|
9
|
Liu S, Wang J, Chen J, Guan S, Zhang T. Sustained delivery of gambogic acid from mesoporous rod-structure hydroxyapatite for efficient in vitro cancer therapy. BIOMATERIALS ADVANCES 2022; 137:212821. [PMID: 35929258 DOI: 10.1016/j.bioadv.2022.212821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Inspired by the critical role of nanocarrier in biomaterials modification, we synthesized a mesoporous rod-structure hydroxyapatite (MR-HAp) nanoparticles for boosting gambogic acid (GA) bioavailability in cells and improving the tumor therapy. As expected, the GA loading ratio of MR-HAp was up to about 96.97% and GA-loaded MR-HAp (MR-HAp/GA) demonstrates a sustained release performance. Furthermore, a substantial improvement was observed in inhibiting the cell proliferation and inducing the apoptosis of HeLa cells, as the cell viability was decreased to 89.6% and the apoptosis was increased to 49.2% when the cells treated with MR-HAp/GA at a GA concentration of 1 μg/mL for 72 h. The remarkable inhibition effect of cell proliferation and the enhanced inducing apoptosis are attributed to the increasing intracellular reactive oxygen species level and reduced mitochondrial membrane potential. This result provides a promising and facile approach for highly efficient tumor treatment.
Collapse
Affiliation(s)
- Shanshan Liu
- Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfeng Wang
- Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Junqi Chen
- Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shaokang Guan
- Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Qian Y, Zhang Y, Zuh AA, Qiao W. New application of rutin: Repair the toxicity of emerging perfluoroalkyl substance to Pseudomonas stutzeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110879. [PMID: 32559694 DOI: 10.1016/j.ecoenv.2020.110879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are toxic to microorganisms, thereby affecting microbial communities in sludge and soil, but how to repair the toxicity of microorganisms remains unclear. In this study, rutin, an antioxidant, was added into a culture medium with an aerobic denitrification bacteria, Pseudomonas stutzeri, under the exposure of sodium perfluorononyloxy-benzenesulfonate (OBS) to evaluate the repair mechanisms of rutin to the toxicity of OBS to the bacteria. The results showed that rutin could repair the damage of OBS to cell structures, and reduce the death rates of the bacteria under OBS exposure. The dosage of rutin reduced the effect on the inhibition of denitrification ability of P. stutzeri under OBS exposure. Compared with the bacteria exposed to single OBS, the dosage of rutin resulted in that the death rates recovered from 96.2% to 66.4%, the growth inhibition rate decreased from 46.5% to 15.8%, the total nitrogen removal rate recovered from 66.9% to 100%, and the NO2- content recovered from 34.5 mg/L to 0.22 mg/L. The expressions of key denitrification genes (napA, nirS, norB, nosZ) were recovered after adding rutin under OBS exposure. Rutin changed the positive rate of reactive oxygen species, the relative superoxide dismutase and catalase activities in the bacteria which exposed to OBS. The mechanism by which rutin repaired the toxicity of OBS to P. stutzeri related to inhibiting the activities of antioxidant and denitrification enzymes rather than affecting the expressions of genes involved in these enzymes. This study sheds light on the repair method of micro-organics and reveals the repair mechanisms under PFASs exposure.
Collapse
Affiliation(s)
- Yi Qian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunhao Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Achuo Anitta Zuh
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
11
|
Zhou Y, You H, Zhang A, Jiang X, Pu Z, Xu G, Zhao M. Lipoxin A4 attenuates uric acid-activated, NADPH oxidase-dependent oxidative stress by interfering with translocation of p47phox in human umbilical vein endothelial cells. Exp Ther Med 2020; 20:1682-1692. [PMID: 32765680 PMCID: PMC7388524 DOI: 10.3892/etm.2020.8812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
LipoxinA4 (LXA4) is a well-known key mediator of endogenous anti-inflammation and of the resolution of inflammation. Considerable oxidative stress occurs during inflammation due to the generation of reactive oxidative species (ROS). Moreover, high levels of uric acid (UA) contribute to endothelial cell dysfunction, which can promote disease-related morbidity, and NADPH oxidase-derived ROS are crucial regulatory factors in these responses. However, LXA4 also has the potential to reduce oxidative stress. The aim of the present study was to examine whether LXA4 could suppress UA-induced oxidative stress in human umbilical vein endothelial cells (HUVECs) and to investigate its mechanisms of action in vitro. HUVECs were incubated with or without LXA4, followed by the addition of UA. ROS levels were then measured using 2,7-dichlorodihydrofluorescein diacetate and lucigenin-enhanced chemiluminescence was used to evaluate NADPH oxidase activity. p47phox or p22phox small interfering (si)RNA were transfected into HUVECs and protein levels of p47phox were detected using western blot analysis. LXA4 significantly inhibited UA-induced generation of ROS to the same extent as the NADPH oxidase inhibitor, diphenyleneiodonium chloride. Notably, transfection of p47phox siRNA attenuated the generation of ROS and the activation of NADPH oxidase. Cells transfected with p22phox siRNA demonstrated a significant reduction in the expression of p47phox on the membrane. Further experiments demonstrated that LXA4 interfered with the transfer of p47phox from the cytoplasm to the cell membrane. These findings suggested that LXA4 inhibited the release of NADPH oxidase derived ROS in HUVECs stimulated by UA. A potential mechanism of action underlying this effect could be LXA4-mediated suppression of NADPH oxidase activity, leading to inhibition of p47phox translocation from the cytoplasm to the cell membrane.
Collapse
Affiliation(s)
- You Zhou
- Department of Medical Laboratory, Central Hospital of Suining, Suining, Sichuan 629100, P.R. China
| | - Hui You
- Department of Ophthalmology, Central Hospital of Suining, Suining, Sichuan 629100, P.R. China
| | - Aijie Zhang
- Basic Medical Laboratory, Central Hospital of Suining, Suining, Sichuan 629100, P.R. China
| | - Xingliang Jiang
- Department of Medical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Zheyan Pu
- Department of Medical Laboratory, Central Hospital of Suining, Suining, Sichuan 629100, P.R. China
| | - Guoqiang Xu
- Department of Medical Laboratory, Central Hospital of Suining, Suining, Sichuan 629100, P.R. China
| | - Mingcai Zhao
- Department of Medical Laboratory, Central Hospital of Suining, Suining, Sichuan 629100, P.R. China
| |
Collapse
|
12
|
Zhang H, Zong Z, Lei S, Srinivas S, Sun J, Feng Y, Huang M, Feng Y. A Genomic, Evolutionary, and Mechanistic Study of MCR-5 Action Suggests Functional Unification across the MCR Family of Colistin Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900034. [PMID: 31179217 PMCID: PMC6548960 DOI: 10.1002/advs.201900034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/14/2019] [Indexed: 02/05/2023]
Abstract
A growing number of mobile colistin resistance (MCR) proteins is threatening the renewed interest of colistin as a "last-resort" defense against carbapenem-resistant pathogens. Here, the comparative genomics of a large plasmid harboring mcr-5 from Aeromonas hydrophila and the structural/functional perspectives of MCR-5 action are reported. Whole genome sequencing has identified the loss of certain parts of the Tn3-type transposon typically associated with mcr-5, providing a clue toward its mobilization. Phylogeny of MCR-5 suggests that it is distinct from the MCR-1/2 sub-lineage, but might share a common ancestor of MCR-3/4. Domain-swapping analysis of MCR-5 elucidates that its two structural motifs (transmembrane domain and catalytic domain) are incompatible with its counterparts in MCR-1/2. Like the rest of the MCR family, MCR-5 exhibits a series of conservative features, including zinc-dependent active sites, phosphatidylethanolamine-binding cavity, and the mechanism of enzymatic action. In vitro and in vivo evidence that MCR-5 catalyzes the addition of phosphoethanolamine to the suggestive 4'-phosphate of lipid A moieties is integrated, and results in the consequent polymyxin resistance. In addition, MCR-5 alleviates the colistin-induced formation of reactive oxygen species in E. coli. Taken together, the finding suggests that a growing body of MCR family resistance enzymes are functionally unified.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- Carl R. Woese Institute for Genomic Biology and Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Zhiyong Zong
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengdu610041China
| | - Sheng Lei
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Swaminath Srinivas
- Carl R. Woese Institute for Genomic Biology and Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhou510642China
| | - Yu Feng
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengdu610041China
| | - Man Huang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhou510642China
- College of Animal SciencesZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
13
|
Sun HJ, Zhang Y, Zhang JY, Lin H, Chen J, Hong H. The toxicity of 2,6-dichlorobenzoquinone on the early life stage of zebrafish: A survey on the endpoints at developmental toxicity, oxidative stress, genotoxicity and cytotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:719-724. [PMID: 30500751 DOI: 10.1016/j.envpol.2018.11.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
2,6-dichlorobenzoquinone (2,6-DCBQ), an emerging disinfection by-production, frequently occurs in reclaimed water and drinking water. However, limited information was available regarding its toxicity. To evaluate its impact, zebrafish at early life stage were exposed to 0, 10, 30, 60, 90, or 120 μg L-1 2,6-BDCQ for 72 h. Our results indicated that 2,6-BDCQ decreased zebrafish's survival rate to 65% and 44% at 90 and 120 μg L-1 treatments and increased its aberration rate to 11% and 26% at 90 μg L-1 and 120 μg L-1 treatments. Besides, 2,6-BDCQ had adverse effect on its oxidative stress (elevated superoxide dismutase activity), lipid peroxidation (increased malondialdehyde levels), DNA damage (increased 8-hydroxydeoxyguanosine contents) and apoptosis (increased caspase-3 activity). Although lower concentrations (≤60 μg L-1) of 2,6-BDCQ didn't exhibit significant effect on its survival development or lipid peroxidation of zebrafish, they induced obvious DNA damage and apoptosis occurrence. These results revealed 2,6-BDCQ caused genotoxicity and cytotoxicity to zebrafish. This study provides novel insight into 2,6-DCBQ-induced toxicity in zebrafish.
Collapse
Affiliation(s)
- Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yu Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jing-Ying Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
14
|
Xu Y, Zhong LL, Srinivas S, Sun J, Huang M, Paterson DL, Lei S, Lin J, Li X, Tang Z, Feng S, Shen C, Tian GB, Feng Y. Spread of MCR-3 Colistin Resistance in China: An Epidemiological, Genomic and Mechanistic Study. EBioMedicine 2018; 34:139-157. [PMID: 30061009 PMCID: PMC6116419 DOI: 10.1016/j.ebiom.2018.07.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mobilized resistance to colistin is evolving rapidly and its global dissemination poses a severe threat to human health and safety. Transferable colistin resistance gene, mcr-3, first identified in Shandong, China, has already been found in several countries in multidrug-resistant human infections. Here we track the spread of mcr-3 within 13 provinces in China and provide a complete characterization of its evolution, structure and function. METHODS A total of 6497 non-duplicate samples were collected from thirteen provinces in China, from 2016 to 2017 and then screened for the presence of mcr-3 gene by PCR amplification. mcr-3-positive isolates were analyzed for antibiotic resistance and by southern blot hybridization, transfer analysis and plasmid typing. We then examined the molecular evolution of MCR-3 through phylogenetic analysis. Furthermore, we also characterized the structure and function of MCR-3 through circular dichroism analyses, inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography mass spectrometry (LC/MS), confocal microscopy and chemical rescue tests. FINDINGS 49 samples (49/6497 = 0.75%) were mcr-3 positive, comprising 40 samples (40/4144 = 0.97%) from 2017 and 9 samples (9/2353 = 0.38%) from 2016. Overall, mcr-3-positive isolates were distributed in animals and humans in 8 of the 13 provinces. Three mcr-3-positive IncP-type and one mcr-1-bearing IncHI2-like plasmids were identified and characterized. MCR-3 clusters with PEA transferases from Aeromonas and other bacteria and forms a phylogenetic entity that is distinct from the MCR-1/2/P(M) family, the largest group of transferable colistin resistance determinants. Despite that the two domains of MCR-3 not being exchangeable with their counterparts in MCR-1/2, structure-guided functional mapping of MCR-3 defines a conserved PE-lipid recognizing cavity prerequisite for its enzymatic catalysis and its resultant phenotypic resistance to colistin. We therefore propose that MCR-3 uses a possible "ping-pong" mechanism to transfer the moiety of PEA from its donor PE to the 1(or 4')-phosphate of lipid A via an adduct of MCR-3-bound PEA. Additionally, the expression of MCR-3 in E. coli prevents the colistin-triggered formation of reactive oxygen species (ROS) and interferes bacterial growth and viability. INTERPRETATION Our results provide an evolutionary, structural and functional definition of MCR-3 and its epidemiology in China, paving the way for smarter policies, better surveillance and effective treatments.
Collapse
Affiliation(s)
- Yongchang Xu
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lan-Lan Zhong
- Zhongshan School of Medicine, Key Laboratory of Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Man Huang
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - David L Paterson
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Building 71/918, Brisbane QLD 4029, Australia
| | - Sheng Lei
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingxia Lin
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Zichen Tang
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Siyuan Feng
- Zhongshan School of Medicine, Key Laboratory of Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cong Shen
- Zhongshan School of Medicine, Key Laboratory of Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guo-Bao Tian
- Zhongshan School of Medicine, Key Laboratory of Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
15
|
Wei W, Srinivas S, Lin J, Tang Z, Wang S, Ullah S, Kota VG, Feng Y. Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis. PLoS Genet 2018; 14:e1007389. [PMID: 29758020 PMCID: PMC5983563 DOI: 10.1371/journal.pgen.1007389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/01/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022] Open
Abstract
Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Illinois, United States of America
| | - Jingxia Lin
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zichen Tang
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Saif Ullah
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Vishnu Goutham Kota
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Xu YX, Zeng ML, Yu D, Ren J, Li F, Zheng A, Wang YP, Chen C, Tao ZZ. In vitro assessment of the role of DpC in the treatment of head and neck squamous cell carcinoma. Oncol Lett 2018; 15:7999-8004. [PMID: 29740495 DOI: 10.3892/ol.2018.8279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the antitumor efficacy of di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) on head and neck squamous cell carcinoma (HNSCC) cells. The proliferation and apoptosis of HNSCC cells treated with the iron chelators DpC and Dp44mT were detected. The mechanism of DpC-induced apoptosis on HNSCC cells was investigated. The human HNSCC cell lines FaDu, Cal-27 and SCC-9 were cultured in vitro and exposed to gradient concentrations of DpC and Dp44mT. A Cell Counting Kit-8 assay was used to detect the viability of FaDu, Cal-27, SCC-9 cells. Double staining with annexin V and propidium iodide was performed for the detection of the proportion of apoptotic FaDu, Cal-27 and SCC-9 cells following treatment. The nuclear damage to Cal-27 cells that were treated with DpC was detected by Hoechst staining. Finally, western blot analysis was used to detect the expression of proteins associated with the DNA damage pathway in Cal-27 cells that were treated with DpC. The CCK-8 assay showed that treatment with DpC and Dp44mT was able to markedly inhibit the viability of FaDu, Cal-27 and SCC-9 cells in a concentration-dependent manner. In comparison to Dp44mT, treatment with DpC exhibited a more effective inhibitory effect on the viability of HNSCC cells. The proportion of apoptotic cells detected by flow cytometry increased in a dose-dependent manner in all cell lines following DpC and Dp44mT treatment, with the proportion of apoptotic HNSCC cells induced by DpC treatment being significantly higher compared with Dp44mT (P<0.05). The results of Hoechst staining revealed that the nuclei of Cal-27 cells exhibited morphological changes in response to DpC treatment, including karyopyknosis and nuclear fragmentation. The expression of DNA damage-associated proteins, including phosphorylated (p)-serine-protein kinase ATM, p-serine/threonine-protein kinase Chk1 (p-Chk-1), p-serine/threonine-protein kinase ATR (p-ATR), p-Chk-2, poly (ADP-ribose) polymerase, p-histone H2AX, breast cancer type 1 susceptibility protein, p-tumor protein P53, increased with increasing concentration of DpC in Cal-27 cells. Treatment with DpC and Dp44mT markedly inhibited cell viability and increased the apoptotic rates in human HNSCC cells in a concentration-dependent manner. DpC exhibited a stronger antitumor effect compared with Dp44mT, potentially inducing the apoptosis of HNSCC cells via the upregulation of DNA damage repair-associated proteins.
Collapse
Affiliation(s)
- Ye-Xing Xu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man-Li Zeng
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Di Yu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Ren
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Anyuan Zheng
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yong-Ping Wang
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chen Chen
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China.,Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
17
|
Ge F, Xiao Y, Yang Y, Wang W, Moe B, Li XF. Formation of water disinfection byproduct 2,6-dichloro-1,4-benzoquinone from chlorination of green algae. J Environ Sci (China) 2018; 63:1-8. [PMID: 29406093 DOI: 10.1016/j.jes.2017.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/30/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
We report that green algae in lakes and rivers can serve as precursors of halobenzoquinone (HBQ) disinfection byproducts (DBPs) produced during chlorination. Chlorination of a common green alga, Chlorella vulgaris, produced 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), the most prevalent HBQ DBP in disinfected water. Under varying pH conditions (pH6.0-9.0), 2,6-DCBQ formation ranged from 0.3 to 2.1μg/mg C with maximum formation at pH8.0. To evaluate the contribution of organic components of C. vulgaris to 2,6-DCBQ formation, we separated the organics into two fractions, the protein-rich fraction of intracellular organic matter (IOM) and the polysaccharide-laden fraction of extracellular organic matter (EOM). Chlorination of IOM and EOM produced 1.4μg/mg C and 0.7μg/mg C of 2,6-DCBQ, respectively. The IOM generated a two-fold higher 2,6-DCBQ formation potential than the EOM fraction, suggesting that proteins are potent 2,6-DCBQ precursors. This was confirmed by the chlorination of proteins extracted from C. vulgaris: the amount of 2,6-DCBQ produced is linearly correlated with the concentration of total algal protein (R2=0.98). These results support that proteins are the primary precursors of 2,6-DCBQ in algae, and control of green algal bloom outbreaks in source waters is important for management of HBQ DBPs.
Collapse
Affiliation(s)
- Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Yao Xiao
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yixuan Yang
- College of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310028, China
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
18
|
Liu F, Du J, Song D, Xu M, Sun G. A sensitive fluorescent sensor for the detection of endogenous hydroxyl radicals in living cells and bacteria and direct imaging with respect to its ecotoxicity in living zebra fish. Chem Commun (Camb) 2016; 52:4636-9. [DOI: 10.1039/c5cc10658c] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MPT-Cy2exhibited excellent selectivity and sensitivity toward ˙OH over other ROS and showed a high potential for the imaging of endogenous ˙OH in living cells and various types of bacteria.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Juan Du
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Da Song
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Guoping Sun
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| |
Collapse
|