1
|
Zhang AP, Fan YX, Wang N, Yu H. A sensitive bromate sensor based on a gold nanoparticle-poly(diallyldimethylammonium chloride)-reduced graphene oxide nanocomposite modified glassy carbon electrode. Mikrochim Acta 2024; 192:43. [PMID: 39738938 DOI: 10.1007/s00604-024-06871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/30/2024] [Indexed: 01/02/2025]
Abstract
A nanocomposite consisting of gold nanoparticles (AuNPs), poly(diallyldimethylammonium chloride) (PDDA), and reduced graphene oxide (rGO) was fabricated by a two-step chemical reduction method. Firstly, a PDDA-rGO composite was prepared by using hydrazine hydrate as a reducing agent. Subsequently, the AuNP-PDDA-rGO composite was prepared in ethylene glycol with PDDA-rGO and HAuCl4 as raw materials using sodium citrate as a reduction agent. The resulting composite was characterized using X-ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and electrochemical methods. This composite was then modified on a glassy carbon electrode (GCE) by the dropping method. The electrochemical behavior of bromate on this modified electrode was investigated. The results showed that PDDA-rGO can be used as a good carrier to obtain AuNPs with small particle sizes and good dispersion. The AuNPs and PDDA-rGO in composite enhanced the electrochemical activity of the electrode. Under the synergistic action of each component, the resulting electrode exhibited high activity for the electrochemical reduction of bromate. Based on this, an amperometric bromate sensor was fabricated in N2-saturated 0.10 mol/L HCl with attractive features including a wide linear range of 1.0 × 10-7-1.7 × 10-3 mol/L, a low detection limit (3sb) of 3.2 × 10-8 mol/L, and a high sensitivity of 2317 µA/mM/cm2. The sensor was successively used for the determination of bromate in drinking water.
Collapse
Affiliation(s)
- Ai-Ping Zhang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yi-Xuan Fan
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Hao Yu
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
2
|
Zhang J, Li R, Yu J, Bai H, Lu M, Wang B. Three-dimensional gel network structure of agarose interlayer dispersed Pd nanoparticles in copper foam electrode for electrocatalytic degradation of doxycycline hydrochloride. Int J Biol Macromol 2024; 279:135348. [PMID: 39270913 DOI: 10.1016/j.ijbiomac.2024.135348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In this study, we successfully prepared palladium/agarose/copper foam (Pd/AG/CF) composite electrodes by utilizing the three-dimensional network structure agarose (AG), a green material derived from biomass, and homogeneously immobilizing palladium (Pd) atoms on a copper foam (CF) substrate through a facile route. The electrode showed excellent performance in the electrocatalytic degradation of doxycycline (DOX), with a high DOX degradation rate of 92.19 % in 60 min. In-depth studies revealed that palladium can form metal-metal interactions with the CF substrates, which enhances the electron transfer on the catalyst surface. In addition, the introduction of agarose effectively prevented the agglomeration of palladium nanoparticles. In addition, the hydroxyl functional groups in the molecular structure of agarose facilitate interactions between water molecules and the electrode interface through the formation of hydrogen bonds, thereby further enhancing the efficiency of the electrocatalytic reaction. In addition to good stability and reusability. Microbial toxicity test results show that the degraded wastewater has minimal impact on the environment. Also, possible degradation pathways of DOX were explored in this study. Finally, a novel continuous flow reactor was designed, featuring a unique design that ensures full contact between wastewater and the composite electrodes, thereby achieving continuous and efficient treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ruoyi Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jiaqi Yu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Haina Bai
- School of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Muchen Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Bing Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
3
|
Meena PL, Surela AK. Review on polyaniline-based nanocomposite heterogeneous catalysts for catalytic reduction of hazardous water pollutants. RSC Adv 2024; 14:26801-26819. [PMID: 39184004 PMCID: PMC11342828 DOI: 10.1039/d4ra02550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Water contamination by highly toxic substances has generated serious ecological disturbances and health problems for humans. Hence, decontamination of toxic pollutants using advanced, inexpensive, and eco-friendly approaches is the current demand. Heterogeneous catalyst-based catalytic reduction processes have offered the opportunity to transform hazardous water pollutants into non-hazardous products via sustainable, eco-friendly, and efficient routes and might be a competitive substitute for existing traditional water purification techniques. However, the key challenges linked with pure heterogeneous catalysts include agglomeration and poor dispersion, stability, recovery, and reusability, which result in poor activity and efficiency. Thus, it is essential to produce multipurpose polymer-based composite catalysts using conducting polymers, which are exceptionally good supportive and matrix materials. The blending of metal-based nanomaterials with polyaniline conducting polymers produces highly stable and efficient heterogeneous nanocomposite catalysts with amazing catalytic activity against a wide range of water pollutants. The heterogeneous catalytic reductive degradation of immensely toxic pollutant water has gained substantial curiosity because of its excellent physicochemical and surface characteristics, porous structure, recoverability, and recyclability. Therefore, this review presents the latest efforts to generate various polyaniline-based nanocomposite catalysts using a polyaniline matrix and various nanofiller materials and their potential applications in heterogeneous catalytic reduction degradation of water pollutants.
Collapse
Affiliation(s)
| | - Ajay Kumar Surela
- Department of Chemistry, University of Rajasthan Jaipur 302004 India
| |
Collapse
|
4
|
Liang B, Zhu P, Gu J, Yuan W, Xiao B, Hu H, Rao M. Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives. Molecules 2024; 29:3543. [PMID: 39124948 PMCID: PMC11314527 DOI: 10.3390/molecules29153543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Mesoporous silica SBA-15 has emerged as a promising adsorbent and separation material due to its unique structural and physicochemical properties. To further enhance its performance, various surface modification strategies, including metal oxide and noble metal incorporation for improved catalytic activity and stability, organic functionalization with amino and thiol groups for enhanced adsorption capacity and selectivity, and inorganic-organic composite modification for synergistic effects, have been extensively explored. This review provides a comprehensive overview of the recent advances in the surface modification of SBA-15 for adsorption and separation applications. The synthesis methods, structural properties, and advantages of SBA-15 are discussed, followed by a detailed analysis of the different modification strategies and their structure-performance relationships. The adsorption and separation performance of functionalized SBA-15 materials in the removal of organic pollutants, heavy metal ions, gases, and biomolecules, as well as in chromatographic and solid-liquid separation, is critically evaluated. Despite the significant progress, challenges and opportunities for future research are identified, including the development of low-cost and sustainable synthesis routes, rational design of SBA-15-based materials with tailored properties, and integration into practical applications. This review aims to guide future research efforts in developing advanced SBA-15-based materials for sustainable environmental and industrial applications, with an emphasis on green and scalable modification strategies.
Collapse
Affiliation(s)
- Binjun Liang
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Pingxin Zhu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Jihan Gu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
- Chongyi Green Metallurgy New Energy Co., Ltd., Ganzhou 341300, China
| | - Weiquan Yuan
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Bin Xiao
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Haixiang Hu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Mingjun Rao
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Yu L, Ye J, Li DH, Sun YQ, Li XX, Zheng ST. A tetrahedron-shaped polyoxoantimotungstate encapsulating a hexanuclear octahedral lanthanide-oxo cluster for an amperometric bromate sensor. Dalton Trans 2024; 53:5258-5265. [PMID: 38407346 DOI: 10.1039/d3dt03789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
An inorganic hexalanthanide-oxo-cluster-encapsulated antimotungstate, K2Na3H43[Nd6(OH)6(H2O)6(B-α-SbW9O33)4]2·67H2O (1), has been successfully synthesized by a facile one-step hydrothermal reaction method. The tetrahedron-shaped two-shell {Nd6(OH)6(H2O)6(B-α-SbW9O33)4}(1a) polyanion is composed of a novel pure lanthanide-oxo {Nd6(μ3-OH)6(H2O)6} octahedron and {(B-α-SbW9O33)4} tetrahedron. After being effectively loaded onto a glassy carbon electrode (GCE) by electrostatic adsorption using polydiallyldimethyl ammonium chloride (PDDA)-functionalized multi-walled carbon nanotubes (MWCNTs), compound 1 exhibits electrochemical activity for the reduction of bromate ions with good selectivity, a high sensitivity of 186 μA mM-1 and a detection limit that has reached 1.9 μM. To the best of our knowledge, this is the first example of an amperometric bromate sensor based on Ln-containing antimotungstates, which will provide new materials for electrochemical sensors.
Collapse
Affiliation(s)
- Lan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Jing Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Da-Huan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Yan-Qiong Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Shou-Tian Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| |
Collapse
|
6
|
Sun Y, Sun S, Wu T, Qu X, Zheng S. Highly effective electrocatalytic reduction of N-nitrosodimethylamine on Ru/CNT catalyst. CHEMOSPHERE 2022; 305:135414. [PMID: 35728667 DOI: 10.1016/j.chemosphere.2022.135414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is a commonly identified carcinogenic and genotoxic pollutant in water. In this study, we prepared Ru catalysts supported on carbon nanotube (Ru/CNT) and studied the electrocatalytic reduction of N-nitrosamines on Ru/CNT electrode in a three-electrode system. The results show that Ru-based catalyst exhibits a high activity of 793.3 μmol L-1 gCat-1 h-1 for electrochemical reduction of NDMA. Reaction mechanism study discloses that the electrocatalytic reduction of NDMA is accomplished by both direct electron reduction and atomic H* mediated indirect reduction pathways. Further product analysis indicates that NDMA is finally reduced to dimethylamine (DMA) and ammonia. The reduction efficiency of NDMA strongly relies on cathode potential, initial NDMA concentration and solution pH. To verify the universality of Ru/CNT electrode, electrocatalytic reduction of three dialkyl N-nitrosamines with different alkyl groups was performed and Ru catalyst has high catalytic activities for the three N-nitrosamines, while the catalytic efficiency differs with their structures. Simultaneous electrochemical reduction of the three N-nitrosamines indicates that the reduction rates of N-nitrosamines follow the same order in the multiple-component system as that in the single-component system. Catalyst recycling results demonstrate that after 5 consecutive recycling runs Ru/CNT electrode remains almost identical catalytic activity to the fresh catalyst, manifesting the high catalytic stability of Ru/CNT electrode.
Collapse
Affiliation(s)
- Yuhan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Su Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Tianyi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
7
|
Wu T, Hu J, Wan Y, Qu X, Zheng S. Synergistic effects boost electrocatalytic reduction of bromate on supported bimetallic Ru-Cu catalyst. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129551. [PMID: 35999744 DOI: 10.1016/j.jhazmat.2022.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Bromate is a commonly identified carcinogenic and genotoxic disinfection byproduct in water. In the present work, bimetallic Ru-Cu catalyst supported on carbon nanotube (RuCu/CNT) was prepared and the structural properties of the catalysts were characterized. The results show that the presence of Ru enhances the dispersion and reduction of Cu particles in the RuCu/CNT catalyst in comparison with the monometallic Cu catalyst supported on CNT (Cu/CNT). For electrocatalytic reaction on Cu/CNT, bromate is reduced on metallic Cu surface via a redox process. For Ru/CNT, highly active H* radicals are generated on metallic Ru surface via the Volmer process and are used for bromate reduction. As for the RuCu/CNT, bromate is reduced through two main pathways, including direct redox reaction on metallic Cu and indirect reduction by active H* radicals on Ru surface. Accordingly, RuCu/CNT exhibits the highest catalytic activity, ascribed to the synergistic effect between metallic Ru and Cu. Furthermore, the bimetallic catalyst displays much higher catalytic efficiency as compared with previously reported results. The pH, initial bromate concentration, in-situ electrochemical reduction of the electrodes and working potential have strong impacts on the removal efficiency of bromate on RuCu/CNT.
Collapse
Affiliation(s)
- Tianyi Wu
- State Key Laboratory of Pollution Control and resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jiajia Hu
- State Key Laboratory of Pollution Control and resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuqiu Wan
- State Key Laboratory of Pollution Control and resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Electrochemical Sensors for Determination of Bromate in Water and Food Samples-Review. BIOSENSORS-BASEL 2021; 11:bios11060172. [PMID: 34072226 PMCID: PMC8230011 DOI: 10.3390/bios11060172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
The application of potassium bromate in the baking industry is used in most parts of the world to avert the human health compromise that characterizes bromates carcinogenic effect. Herein, various methods of its analysis, especially the electrochemical methods of bromate detection, were extensively discussed. Amperometry (AP), cyclic voltammetry (CV), square wave voltammetry (SWV), electrochemiluminescence (ECL), differential pulse voltammetry and electrochemical impedance spectroscopy (EIS) are the techniques that have been deployed for bromate detection in the last two decades, with 50%, 23%, 7.7%, 7.7%, 7.7% and 3.9% application, respectively. Despite the unique electrocatalytic activity of metal phthalocyanine (MP) and carbon quantum dots (CQDs), only few sensors based on MP and CQDs are available compared to the conducting polymers, carbon nanotubes (CNTs), metal (oxide) and graphene-based sensors. This review emboldens the underutilization of CQDs and metal phthalocyanines as sensing materials and briefly discusses the future perspective on MP and CQDs application in bromate detection via EIS.
Collapse
|
9
|
Zeng M, Lou C, Xue J, Jiang H, Li K, Chen Z, Fu S, Yin G. Palladium (II)‐catalyzed homogeneous alcohol oxidations: Disclosing the crucial contribution of palladium nanoparticles in catalysis. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miao Zeng
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Chenlin Lou
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Jing‐Wen Xue
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Shitao Fu
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
10
|
Lu J, Zhang C, Wu J. One-pot synthesis of magnetic algal carbon/sulfidated nanoscale zerovalent iron composites for removal of bromated disinfection by-product. CHEMOSPHERE 2020; 250:126257. [PMID: 32113089 DOI: 10.1016/j.chemosphere.2020.126257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Magnetic algal carbon supported flower-like sulfidated nanoscale zerovalent iron (S-nZVI/AC) composite was firstly synthesized through one-pot method and used for removing bromate. More than 98% of bromate was efficiently removed within 48 min. Compared with the individual S-nZVI treatment, the removal rate constant of the S-nZVI/AC composite treatment was almost doubled. The removal rate constant of bromate increased three times when the S/Fe ratio increased from 0 to 0.3. According to the synergistic effect between the algal carbon and S-nZVI on the bromate removal, the introduction of carbon and sulfide-modification of nZVI were efficient modification approaches for enhancing the removal of bromated using S-nZVI/AC composite. The removal efficiency of bromate increased sharply to more than 98% when the composite dose increased from 0 to 40 mg L-1. The removal rate constant increased linearly from 0.08 to 0.31 min-1 when the initial concentration increased from 50 to 200 μg L-1. The removal efficiency of the bromate still maintained at high level (>85%) after 5 recycles of the S-nZVI/AC composite. Bromate was readily removed under neutral or slight acidic conditions. The bromate removal rate constant increased from 0.10 to 0.27 min-1 when the temperature increased from 15 to 35 °C. The bromate removal rate constant increased almost 4 times when the ionic strength increased from 0 to 3 g L-1. This study demonstrates that S-nZVI/AC composite synthesized through one-pot method is a promising water purification material for efficient removal of bromated disinfection by-product.
Collapse
Affiliation(s)
- Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Cui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, 264025, PR China.
| |
Collapse
|
11
|
Jiang SF, Xi KF, Yang J, Jiang H. Biochar-supported magnetic noble metallic nanoparticles for the fast recovery of excessive reductant during pollutant reduction. CHEMOSPHERE 2019; 227:63-71. [PMID: 30981971 DOI: 10.1016/j.chemosphere.2019.04.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/25/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
The catalytic reduction of diverse pollutants by noble metal catalysts in the presence of reductants is a highly effective and widely used method. However, the considerable cost of noble metal catalysts impedes the practical application of this method, and the recovery of excessive reductants has not been reported previously. In this work, we prepared inexpensive biochar-supported magnetic noble metallic nanoparticles (NPs) and efficiently recovered the excessive reductants in the form of H2. The as-synthesized biochar-supported noble metallic NPs exhibited high H2 recovery during the 4-nitrophenol reduction reaction. Results showed that the catalysts with low noble metallic content have higher H2 recovery rate than commercial Pd/C, Ag/C, and Pt/C. The catalytic mechanism of magnetic biochar-supported noble metallic NPs was demonstrated to be a "synergetic effect", where biochar and Fe3O4 acted as accelerants that enable noble metallic NPs to produce active hydrogen for the reduction reaction, and the excess active hydrogen atoms combined to form H2.
Collapse
Affiliation(s)
- Shun-Feng Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Kun-Fang Xi
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
12
|
Zhao X, You Y, Huang S, Cheng F, Chen P, Li H, Zhang Y. Facile construction of reduced graphene oxide supported three-dimensional polyaniline/WO 2.72 nanobelt-flower as a full solar spectrum light response catalyst for efficient photocatalytic conversion of bromate. CHEMOSPHERE 2019; 222:781-788. [PMID: 30738320 DOI: 10.1016/j.chemosphere.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
As a carcinogenic byproduct in drinking water treatment, bromate has raised global concerns on environmental and health hazard, calling for effective treatments. In the current work, a novel reduced graphene oxide supported polyaniline/WO2.72 nanobelt-flower (RGO/PANI/WO2.72) ternary composite was prepared through a solvent volatilization method for photocatalytic reduction of bromate. The prepared sample was characterized, and the influence of aqueous pH, ions and dissolved oxygen on the bromate reduction was explored. As expected, the introduction of RGO and PANI on the WO2.72 exhibited great synergistic effects on the separation of photogenerated carriers. The calculated reduction rate constant of RGO/PANI/WO2.72 was about six times as high as that of pure WO2.72. Specially, the prepared photocatalyst possessed strong optical absorption in a broad range of 250-2500 nm, and thus displaying excellent catalytic performance in utilization of all solar spectrum energy. Moreover, the RGO/PANI/WO2.72 exhibited stable photocatalytic activity in cycling test. Considered holistically, the present study offered a valuable approach for rational construction of heterogeneous structure in the development of bromate-catalyzed reduction.
Collapse
Affiliation(s)
- Xuesong Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, Guangzhou, 510006, PR China
| | - Yingying You
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, Guangzhou, 510006, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, Guangzhou, 510006, PR China.
| | - Fangqin Cheng
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Pengfei Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, Guangzhou, 510006, PR China
| | - Han Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Ecological Environment Control Engineering Technology Research Center, Guangzhou, 510006, PR China
| |
Collapse
|
13
|
Gonzalez J, Coca-Clemente JA, Molina A, Laborda E, Gomez-Gil JM, Rincon LA. Carbon Support Effects and Mechanistic Details of the Electrocatalytic Activity of Polyoxometalates Investigated via Square Wave Voltacoulometry. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Gonzalez
- Departamento
de Química Física, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - J. A. Coca-Clemente
- Stephenson
Institute for Renewable Energy, University of Liverpool, Chadwick Building, Peach Street, L69 7ZF Liverpool, United Kingdom
| | - A. Molina
- Departamento
de Química Física, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - E. Laborda
- Departamento
de Química Física, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - J. M. Gomez-Gil
- Departamento
de Química Física, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - L. A. Rincon
- Departamento
de Química Física, Facultad de Química, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|