1
|
Hassaan MA, Ragab S, Elkatory MR, El Nemr A. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) distribution, origins, and risk evaluation in the Egyptian Mediterranean coast sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11093. [PMID: 39129319 DOI: 10.1002/wer.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
A study was conducted on 31 surface sediments located in different sectors of the Egyptian Mediterranean coast. The sediments were analyzed for their pollution levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The sediments were collected from various depths in harbors, coastal lakes, bays, and lagoons, covering the southeastern Mediterranean of the Nile Delta region. The study aimed at determining the distribution, origin, and potential ecological impact of OCP and PCB pollutants. The researchers used the SRM method of GC-MS/MS to measure the concentration of 18 PCBs and 16 OCPs residues. The study found that the total concentration of OCPs in the samples ranged from 3.091 to 20.512 ng/g, with a mean of 8.749 ± 3.677 ng/g. The total concentration of PCB residues ranged from 2.926 to 20.77 ng/g, with a mean of 5.68 ± 3.282 ng/g. The concentration of DDTs exceeded the effect range low (ERL) (1.00) and threshold effect level (TEL) (1.19) in several stations, but it was still below the effect range median (ERM) (7.00) and the probable effect level (PEL) (4.77). This indicates a low ecological risk. The principal component analysis (PCA) was also conducted to determine the sources of all pollutants in the sediment. The PCA showed significant correlations between the concentrations of Gama-HCH and Beta-HCH (0.741), suggesting similar sources. PRACTITIONER POINTS: OCPs and PCBs residues were analyzed in the sediment of the southeastern Mediterranean. The concentration, existence, and causes of OCPs and PCBs were investigated. OCPs and PCBs ecological risk and ecotoxicological calculation were investigated in detail. Cluster analysis, PCA, and correlation coefficient were also investigated.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
2
|
Guo Z, Gao X, Wang C, Liu S, Xu C, Mao S, Sun X, Niu L, Liu W. Isomer, enantiomer and compound-specific stable isotope evidences for the transformation of dichlorodiphenyltrichloroethanes (DDTs) in soils from three typical paddy fields in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135233. [PMID: 39029190 DOI: 10.1016/j.jhazmat.2024.135233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Chlorinated pollutants may follow distinct degradation pathways in anaerobic environments compared to aerobic settings. However, the understanding of the behaviors and fate of dichlorodiphenyltrichloroethanes (DDTs) under anaerobic conditions remains limited. To address this knowledge gap, we conducted a study on flooded soil samples collected from three typical paddy fields in China using an integrated approach of enantiomer-specific analysis and compound-specific stable carbon isotope analysis. It is unexpected that the dichlorodiphenyldichloroethane /dichlorodiphenyldichloroethylene ratios (DDD/DDE=(o,p'-DDD+p,p'-DDD)/(o,p'-DDE+p,p'-DDE)) were below 1 in over 90 % of the samples. This might be attributed to the higher recalcitrance of p,p'-DDE, which concentrations were found to be 36 times higher than p,p'-DDD on average. There were 71.7 % of the samples showing enantiomeric fractions (EFs) of o,p'-DDT below 0.5, indicating a preferential accumulation of the (-)-enantiomer. The δ13C values of the anaerobic metabolite o,p'-DDD (-24.76 ± 1.35 ‰ to -34.39 ± 0.20 ‰) all deviated negatively from the initial product, while those of the aerobic metabolite o,p'-DDE (-23.61 ± 0.48 ‰ to -38.95 ± 0.81 ‰) displayed either negative or positive deviations. This demonstrates that o,p'-DDD is the primary metabolite of o,p'-DDT under anaerobic conditions. However, no clear correlations were observed between the δ13C and EF of o,p'-DDT. This study underscores the importance of such an integrated methodology in unraveling the fate and behaviors of DDTs in complex environmental systems.
Collapse
Affiliation(s)
- Zili Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaoyi Gao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chenyue Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Centre, Hangzhou 310012, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Cui N, Pan X, Liu J. Distribution, sources and health risk assessment of DDT and its metabolites in agricultural soils in Zhejiang Province, China. ENVIRONMENTAL TECHNOLOGY 2024; 45:1522-1530. [PMID: 36373367 DOI: 10.1080/09593330.2022.2147449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is well known for its harmful effects and has been officially banned as a pesticide around the world. However, DDT pollution still exists in natural environments in China because DDT degrade very slowly. In this study, 60 soil samples were collected from Cixi, Zhejiang Province, and the levels of DDTs and its metabolites in soil and health risks were investigated. The results showed that the detection rate of DDT in soil samples were 100%, and the total DDTs residue in soil ranged from 0.007 to 1.208 mg/kg, with an average of 0. 113±0. 035 mg/kg, which exceeded the second-level Chinese soil environmental quality standard for farmland soil. The average residuals of p,p'-DDT, p,p'-DDE (dichlorodiphenyldichloroethylene), p,p'-DDD (dichlorodiphenyldichloroethane) and o,p'-DDT accounted for 34.8%, 50.9%, 8.0% and 6.3% of the total DDTs, respectively. The DDD/DDE ratios indicated a dehydrochlorination of DDT to DDE under aerobic conditions at most sampling sites. The ratios of (p,p'-DDE+p,p'-DDD)/p,p'-DDT and o,p'-DDT/p,p'-DDT indicating the DDT in the field were mainly introduced via industrial DDT and dicofol, including historical residue and fresh input. The health risk assessment showed that DDT-contaminated sites do not pose a non-carcinogenic risk to humans, and pose a very low risk of cancer to children and a low risk of cancer to adults. Overall, this study helps to understand the distribution, sources and health risks of DDT in typical soils.
Collapse
Affiliation(s)
- Ning Cui
- College of Medicine, Xi'an International University, Xi'an, People's Republic of China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, People's Republic of China
| | - Jing Liu
- College of Medicine, Xi'an International University, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Hassaan MA, Elkatory MR, Ragab S, El Nemr A. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in water-sediment system of southern Mediterranean: Concentration, source and ecological risk assessment. MARINE POLLUTION BULLETIN 2023; 196:115692. [PMID: 37871457 DOI: 10.1016/j.marpolbul.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in the Nile Delta area of Egypt's southern Mediterranean for their environmental impacts, probable sources, and ecological risk assessment. Using the Gas Chromatography Triple Quadrupole technique, the residues of 16 OCPs and 18 PCBs were determined. The total OCPs content in the seawater and sediment samples ranged from 0.108 to 10.97 μg/L and 0.301 to 5.268 ng/g, respectively, while the PCBs residues had values between 0.808 and 1069.75 μg/L in seawater and between not detected and 575.50 ng/g in sediment samples. The findings of the risk evaluation showed that, except for endosulfan-I, OCPs caused little harm in seawater. However, PCB180, PCB153, PCB156, PCB126 and PCB138 posed a comparatively significant risk. The concentration of DDTs was higher than the effect range low and threshold effect level but remained below the effect range median and probable effect level, posing a minimal ecological concern.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Marwa R Elkatory
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
5
|
Wang X, Zhang Z, Zhang R, Huang W, Dou W, You J, Jiao H, Sun A, Chen J, Shi X, Zheng D. Occurrence, source, and ecological risk assessment of organochlorine pesticides and polychlorinated biphenyls in the water-sediment system of Hangzhou Bay and East China Sea. MARINE POLLUTION BULLETIN 2022; 179:113735. [PMID: 35567961 DOI: 10.1016/j.marpolbul.2022.113735] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The pollution characteristics, potential sources, and potential ecological risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Hangzhou Bay (HZB) and East China Sea (ECS). Total OCPs concentration ranged from 2.62 to 102.07 ng/L and 4.41 to 75.79 μg/kg in the seawater and sediment samples, with PCBs concentration in the range of 0.40-51.75 ng/L and 0.80-45.54 μg/kg, respectively. The OCPs were positively correlated with nutrients, whereas PCBs presented a negative correlation. The newly imported dichlorodiphenyltrichloroethane (DDT) in HZB is mainly the mixing of technical DDT and dicofol sources. The PCB source composition is more likely related to the mixture of Kanechlor 300, 400, Aroclor 1016, 1242, and Aroclor 1248. Risk assessment results indicate that OCPs posed low risk in seawater. The potential risk of DDTs in the sediments is a cause of concern.
Collapse
Affiliation(s)
- Xiaoni Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Wenke Dou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Dan Zheng
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315042, PR China
| |
Collapse
|
6
|
Wang R, Qu C, Li M, Shi C, Li W, Zhang J, Qi S. Health risks of exposure to soil-borne dichlorodiphenyltrichloroethanes (DDTs): A preliminary probabilistic assessment and spatial visualization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144949. [PMID: 33571769 DOI: 10.1016/j.scitotenv.2021.144949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Residues of dichlorodiphenyltrichloroethane and its metabolites (DDTs) in soils continue to severely threaten and endanger human health. This present study comprehensively interprets the health risks associated with exposure to soil-borne DDTs and also identifies the spatial visualization of risks at a large regional scale in Fujian, China. There was significant spatial variability of human risk across the region, while levels of health risk displayed a significant positive correlation with population density (p < 0.05). High risk levels occurred mostly in the coastal areas in northeastern Fujian, with additional hotspots in inland areas. The highest total incremental lifetime cancer risks (ILCRs) occurred in Sanming, reaching up to 9.52 × 10-5, 3.27 × 10-5, and 1.76 × 10-4 for children, teens, and adults, respectively. Further, the highest hazard index (HI) value was observed in Fuzhou, reaching up to 6.09, 3.84, and 2.37, respectively. The 95% confidence interval of data regarding ILCRs exceeded the recognized safe threshold, whereas the HI has been deemed accepted. Adults were identified as the most susceptible population in terms of cancer risks, with o,p'-DDT being the primary contributor of ILCRs. Moreover, children were showed to be the most vulnerable in terms of non-cancer risks, with p,p'-DDD being the main contributor of HI. Food ingestion appeared to be the dominant exposure pathway, for both cancer and non-cancer risks. The concentration of DDTs (Csoil) and exposure duration (ED) also greatly influenced the risk, together contributing to over 99% of the ILCRs and HI.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Min Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Changhe Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Organochlorine Pesticides in Sediment of Zhang River Estuary Mangrove National Natural Reserve: The Implication of Its Source Change in China’s Mangroves. SUSTAINABILITY 2020. [DOI: 10.3390/su12073016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Seventeen organochlorine pesticides (OCPs) were examined in surface sediments from Zhang River Estuary Mangrove National Natural Reserve, which is situated in the Fujian province in southeast China. The range of ∑OCPs concentration was 0.29–25.41 ng/g dry weight (average 4.53 ng/g), ∑HCHs was 0.008–0.906 ng/g dry weight (average 0.240 ng/g), and ∑DDTs was ND–4.743 (average 0.664 ng/g). The concentrations of the HCH isomers were observed in the following decreasing order: α-HCH > β-HCH > δ-HCH > γ-HCH, and that of the DDT isomers were as in the following order: p,p’-DDT > p,p’-DDE > p,p’-DDD. According to the analysis of the isomer ratios, γ-HCH (lindane) and endosulfan were rarely used recently around this mangrove forest. Instead, the ratios of (DDD+DDE)/DDT showed that DDTs were still illegally used. Compared with other mangroves in China, the residue level and ecological risk of the OCPs in surface sediment from ZREMNNR are both at a low level. Based on stepwise regression analysis, current fruit planting, as well as mariculture in developed areas and vegetable planting in developing areas, had a positive relation with DDT residues in mangrove sediment in China. Oppositely, HCH residues in mangrove sediment were derived from historical consumption, and generally the higher levels occurred in the developed areas. Through this study, we help to close the knowledge gap of OCPs in China’s mangroves and provide a possible management implication for sustainable development in the future.
Collapse
|
8
|
Wu XR, Li YP, Tu SX, Ding YZ, Wang RG, Rensing C, Feng RW. Elevated atmospheric CO 2 might increase the health risk of long-term ingestion of leafy vegetables cultivated in residual DDT polluted soil. CHEMOSPHERE 2019; 227:289-298. [PMID: 30999170 DOI: 10.1016/j.chemosphere.2019.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/17/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Residual dichlorodiphenyltrichloroethane (DDT) in the environment and a continuously increasing atmospheric carbon dioxide (CO2) concentration are two issues that have received a lot of attention. This study was conducted using a pot experiment to investigate the interactive effects of elevated CO2 and DDT on the uptake of DDT, the physiological responses and the resulting health risks in three vegetables. These vegetables included Brassica juncea var. foliosa Bailey (B. Bailey), Brassica campestris L. var. communis Tsen et Lee Suzhou Qing (B. Lee) and Brassica campestris L. ssp. pekinensis (Lour.) Olsson Chun Dawang (B. Olsson). Two levels of CO2 and four DDT treatment levels were set up. Results showed 5 mg kg-1 DDT significantly reduced the shoot biomass of B. Bailey when compared to 0 mg kg-1 DDT treatment under ambient CO2 condition. Elevated CO2 concentration stimulated the growth of B. Bailey and B. Lee, increased the DDT uptake in the shoots of both vegetables and the values of some photosynthesis indices, and triggered the activity of peroxidase and catalase in the shoots when compared to the related ambient CO2 treatment. Elevated CO2 concentration increased the values of hazard indexes for non-carcinogenic and cancer risks of all vegetables when compared to the individual ambient CO2 treatment (each of vegetable has an ambient CO2 treatment), especially for B. Bailey (increase amplitude of 123.81%-127.78% at 5 mg kg-1 DDT). Long-term ingestion with these DDT-polluted vegetables might result in an elevated carcinogenic risk and elevated atmospheric CO2 may enhance the non-carcinogenic and carcinogenic risks.
Collapse
Affiliation(s)
- Xiao Rong Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin, 300191, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Shu Xin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Zhen Ding
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin, 300191, China
| | - Rui Gang Wang
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin, 300191, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Ren Wei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Wu X, Ding Y, Wang R, Rensing C, Li Y, Feng R. Differences in the uptake and bioconcentration of dichlorodiphenyltrichloroethane by eight vegetable cultivars and their health risk assessments. CHEMOSPHERE 2019; 215:596-604. [PMID: 30342404 DOI: 10.1016/j.chemosphere.2018.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is not easily degraded in soils, which will pose a threat to human health. We investigated the differences of eight vegetables' capacity to take up DDT, removing DDT from soil, and tolerating DDT (monitoring the responses of growth, root morphology and photosynthesis of vegetables to DDT). These vegetables included Chinese mustard (two genotypes, B.jf and B,jm), napa cabbage (two genotypes, B.coz and B.coc) and Bok choy (four genotypes, B.cz, B.cq, B.cs and B.chg). The results demonstrated that 5 mg kg-1 DDT did not display significant effects on the growth of most vegetables in this study. As compared to the control, 5 mg kg-1 DDT significantly increased the shoot and root biomass, the fine root numbers, and the fine root ratio for the genotype of B.chg. However, 5 mg kg-1 DDT exposure showed a negative effect on the shoot growth of two genotypes of napa cabbage. In general, 5 mg kg-1 DDT did not significantly affect the photosynthesis and root morphology of most vegetables in this study. Consuming these vegetables had a low non-cancer health risk, but showed a high cancer health risk. In addition, among the eight vegetables, B.chg accumulated less DDT in the edible parts and had low values of HRnon-cancer and HRcancer for consuming these vegetables containing DDT. Planting these vegetables might promote the degradation of DDT reducing its residual amount in soil.
Collapse
Affiliation(s)
- Xiaorong Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Yongzhen Ding
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Ruigang Wang
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Yuanping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China.
| |
Collapse
|
10
|
Huang H, Zhang Y, Chen W, Chen W, Yuen DA, Ding Y, Chen Y, Mao Y, Qi S. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:560-570. [PMID: 29329097 DOI: 10.1016/j.envpol.2017.12.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Dicofol (2,2,2-trichloro-1,1-bis-(p-chlorophenyl)ethanol) found in the environment is not only a miticide originated from commercial use, but also a metabolite of dichlorodiphenyltrichloroethane (DDT), which is often overlooked. To verify the sources and transformation pathways of DDT and related metabolites in soils, we measured p,p'-(dicofol + DBP) (sum of p,p'-dicofol and 4,4'-dichlorobenzophenone), DDT and six metabolites in soils from Northwest Fujian, China. The ratios of 1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane (o,p'-DDT)/1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDT) and the mass balance demonstrated that p,p'-(dicofol + DBP) predominantly originated from p,p'-DDT transformation rather than from actual dicofol application. p,p'-(dicofol + DBP) accounted for 45.0% as the primary metabolites of DDT in this study, more than 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (p,p'-DDE) and 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDD), which might lead to large overestimations of the fresh DDT input by using the traditional ratio of (∑2DDD + ∑2DDE)/∑2DDT (with all o,p'- and p,p'- isomers included). In paddy fields where the conditions alternate between aerobic (dry period) and anaerobic (wet period), both p,p'-DDD and p,p'-DDE were likely to degrade to 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (p,p'-DDMU), which further transformed to 2,2-bis(p-chlorophenyl)ethylene (p,p'-DDNU). Degradation of p,p'-DDMU to p,p'-DDNU mainly occurred in waterlogged paddy soils. However, p,p'-DDNU might not transform to other higher-order metabolites in aerobic surface soils. Overall, our study confirmed p,p'-(dicofol + DBP) as metabolites of p,p'-DDT, suggested DDE and DDD were parallel precursors of DDMU, and further verified the transformation pathways of DDT in surface soils.
Collapse
Affiliation(s)
- Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Wenwen Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Dave A Yuen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yang Ding
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yingjie Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|