1
|
Clivillé-Cabré P, Lacorte S, Borrull F, Fontanals N, Marcé RM. Evaluation of ceramic passive samplers using a mixed-mode strong cation-exchange sorbent to monitor polar contaminants in river water. J Chromatogr A 2023; 1708:464348. [PMID: 37708670 DOI: 10.1016/j.chroma.2023.464348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Although most of the analytical methods developed for the monitoring of contaminants in environmental waters are based on discrete grab sampling, an alternative of increasing interest is the use of passive sampling. Methods based on passive sampling provide the sampling and pre-concentration of the analytes in-situ, which makes the sample treatment less time consuming and costly than using discrete grab sampling. In this study, ceramic passive samplers (CPSs) using mixed-mode strong cation-exchange sorbent (Oasis MCX) as retention phase were evaluated for the determination of a group of 21 therapeutic and illicit drugs and some of their metabolites in river water samples that were determined by liquid chromatography-tandem mass spectrometry. After assessing the stability of the analytes, the CPSs were calibrated for 9 days with bottled water and river water, obtaining, for the 19 stable compounds, sample rates (Rs) ranging between 0.180 and 1.767 mL/day and diffusion coefficients (De) between 2.02E-8 and 2.81E-7 cm2/s. Once calibrated, CPSs were deployed for the determination of contaminants in the Ebre River, with good reproducibility, and some of the analytes were determined, including amongst others, gabapentin at 76 ng/L, caffeine at 203 ng/L or diclofenac amine at 57 ng/L. The passive sampling method herein presented is simple and feasible and allows the time-integrated analysis of pharmaceuticals and drugs at trace levels in river water. This study opens the possibility of using other mixed-mode sorbents or other types of sorbents as retaining phase on CPSs for the determination of very polar contaminants in water.
Collapse
Affiliation(s)
- Pol Clivillé-Cabré
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Sílvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Núria Fontanals
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Rosa Maria Marcé
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
2
|
Monteiro B, Venâncio C, Francisco R, Sousa ACA, Lopes I. Contributions towards the hazard evaluation of two widely used cytostatic drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15641-15654. [PMID: 36169838 DOI: 10.1007/s11356-022-23120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Cytostatic drugs are one of the most important therapeutic options for cancer, a disease that is expected to affect 29 million individuals by 2040. After being excreted, cytostatics reach wastewater treatment plants (WWTPs), which are unable to efficiently remove them, and consequently, they will be released into the aquatic environment. Due to the highly toxic properties of cytostatics, it is particularly relevant to evaluate their potential ecological risk. Yet, cytostatics toxicity data is still not available for various species. In this work, the ecotoxicity of two widely consumed cytostatics, cyclophosphamide (CYP-as a model cytostatic) and mycophenolic acid (MPA-as a priority cytostatic), was evaluated on three freshwater species-Raphidocelis subcapitata, Brachionus calyciflorus, and Danio rerio, and the risk quotient (RQ) was assessed. Both drugs significantly affected the yield and growth inhibition of the microalgae, while for rotifers, the least sensitive species, only significant effects were registered for CYP. These drugs also caused significant effects on the mortality and morphological abnormalities on zebrafish. The estimation of the RQ discloses that CYP seems to pose a low risk to aquatic biota while MPA poses a very high risk. Altogether, these results emphasize the need for more complete environmental risk assessments, to properly prioritize and rank cytostatics according to their potentially toxic effects on the environment and aquatic biota.
Collapse
Affiliation(s)
- Bruna Monteiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cátia Venâncio
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Rafael Francisco
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana C A Sousa
- Department of Biology and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal.
| | - Isabel Lopes
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Ji X, Challis JK, Brinkmann M. A critical review of diffusive gradients in thin films technique for measuring organic pollutants: Potential limitations, application to solid phases, and combination with bioassays. CHEMOSPHERE 2022; 287:132352. [PMID: 34826958 DOI: 10.1016/j.chemosphere.2021.132352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Diffusive gradient in thin films (DGT) for organics has received considerable attention for studying the chemical dynamics of various organic pollutants in the environment. This review investigates current limitations of DGT for organics and identifies several research gaps for future studies. The application of a protective outer filter membrane has been recommended for most DGT applications, however, important questions regarding longer lag times due to significant interaction or adsorption of specific groups of compounds on the outer membrane remain. A modified DGT configuration has been developed that uses the diffusive gel as the outer membrane without the use of an extra filter membrane, however use of this configuration, while largely successful, remains limited. Biofouling has been a concern when using DGT for metals; however, effect on the performance of DGT for organics needs to be systemically studied. Storage stability of compounds on intact DGT samplers has been assessed in select studies and that data is synthesized here. DGT has been used to describe the kinetic desorption of antibiotics from soils and biosolids based on the soil/biosolid physical-chemical characteristics, yet applications remain limited and requires further research before wide-scale adoption is recommended. Finally, DGT for organics has been rarely, albeit successfully, combined with bioassays as well as in vivo bioaccumulation studies in zebrafish. Studies using DGT combined with bioassays to predict the adverse effects of environmental mixtures on aquatic or terrestrial biota are discussed here and should be considered for future research.
Collapse
Affiliation(s)
- Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
4
|
Xie H, Dong Y, Chen J, Wang X, Fu M. Development and evaluation of a ceramic diffusive layer based DGT technique for measuring organic micropollutants in seawaters. ENVIRONMENT INTERNATIONAL 2021; 156:106653. [PMID: 34034115 DOI: 10.1016/j.envint.2021.106653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Diffusive gradients in thin-films (DGT) technique has been well demonstrated as a robust tool for measuring organic micropollutants (OMPs) in the aquatic environment. However, potential adsorption of the OMPs on organic polymer filters and flow rate of waters can affect the measuring results of the DGT method, hence tedious work should be conducted to reduce these interferences. In the present study, a novel DGT technique coupled with a ceramic diffusive layer was developed to measure the OMPs in seawaters. The ceramic diffusive layer exhibited adsorption inertness to the OMPs with various logKow values. Moreover, the ceramic diffusive layer based DGT technique was proved to be less affected by the flow rate than the traditional DGT with agarose diffusive layer. The developed DGT device exhibited kinetic accumulation for the targets during a 6-d deployment, and measurement of the OMPs by the DGT method was independent with pH and ionic strength. Finally, the developed DGT sampler was applied in coastal waters of Dalian, and eight OMPs were detected with levels ranging from 1.58 to 13.1 ng/L. The development of the ceramic diffusive membrane can lead to simplification of the DGT applications, promoting the progress of the OMPs monitoring technology.
Collapse
Affiliation(s)
- Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Xueling Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Mao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
5
|
Abstract
The uncontrolled release of pharmaceutical drugs into the environment raised serious concerns in the last decades as they can potentially exert adverse effects on living organisms even at the low concentrations at which they are typically found. Among them, platinum based cytostatic drugs (Pt CDs) are among the most used drugs in cancer treatments which are administered via intravenous infusion and released partially intact or as transformation products. In this review, the studies on environmental occurrence, transformation, potential ecotoxicity, and possible treatment for the removal of platinum cytostatic compounds are revised. The analysis of the literature highlighted the generally low total platinum concentration values (from a few tens of ng L−1 to a few hundred μg L−1) found in hospital effluents. Additionally, several studies highlighted how hospitals are sources of a minor fraction of the total Pt CDs found in the environment due to the slow excretion rate which is longer than the usual treatment durations. Only some data about the impact of the exposure to low levels of Pt CDs on the health of flora and fauna are present in literature. In some cases, adverse effects have been shown to occur in living organisms, even at low concentrations. Further ecotoxicity data are needed to support or exclude their chronic effects on the ecosystem. Finally, fundamental understanding is required on the platinum drugs removal by MBR, AOPs, technologies, and adsorption.
Collapse
|
6
|
Cristóvão MB, Bento-Silva A, Bronze MR, Crespo JG, Pereira VJ. Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147477. [PMID: 33971591 DOI: 10.1016/j.scitotenv.2021.147477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of six anticancer drugs was evaluated in wastewater effluents. Several grab samples from wastewater effluent were collected throughout a year. Capecitabine, cyclophosphamide and ifosfamide were detected at concentrations ranging from 8 to 46 ng·L-1. Capecitabine was detected in all the sampling events whereas cyclophosphamide and ifosfamide were detected less frequently. Additionally, the suitability of using pharmaceutical-polar organic chemical integrative samplers (POCIS) to monitor the target drugs in wastewater effluents was assessed. Capecitabine, ifosfamide and cyclophosphamide were detected with POCIS and showed a linear uptake over 15 days. The sampling rates, determined in situ, were used to estimate time-weighted average concentrations. A good correlation was found between the concentration of capecitabine detected with POCIS deployed during five days (32 ± 1 ng·L-1) and the average concentrations obtained in grab samples. The use of passive samplers has advantages over grab samples: easier analysis, less time and costs associated with the analytical method. Passive samplers also provide a time-weighted information about the concentration of pollutants in the aquatic environment. However, information may be lost when the concentration of the target compounds in wastewater effluents is low and the passive samplers are deployed for a short time.
Collapse
Affiliation(s)
- Maria B Cristóvão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | | | - Maria R Bronze
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João G Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa J Pereira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
7
|
Caban M, Lis H, Stepnowski P. Limitations of Integrative Passive Samplers as a Tool for the Quantification of Pharmaceuticals in the Environment - A Critical Review with the Latest Innovations. Crit Rev Anal Chem 2021; 52:1386-1407. [PMID: 33673780 DOI: 10.1080/10408347.2021.1881755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review starts with a presentation of the theory of kinetic uptake by passive sampling (PS), which is traditionally used to distinguish between integrative and equilibrium samplers. Demonstrated limitations of this model for the passive sampling of pharmaceuticals from water were presented. Most notably, the contribution of the protective membrane in the resistance to mass transfer of lipophilic analytes and the well documented effect of external parameters on sampling rates contributed to the greatest uncertainty in PS application. The diffusion gradient in thin layer (DGT) technique seems to reduce the effect of external parameters (e.g., flow rate) to some degree. The laboratory-determined integrative uptake periods over defined sampler deployments was compared, and the discrepancy found suggests that the most popular Polar Organic Chemical Integrative Sampler (POCIS) could in some cases utilized as an equilibrium sampler. This assertion is supported by own calculations for three pharmaceuticals with extremely different lipophilic characters. Finally, the reasons performance reference compounds (PRCs) are not recommended for the reduction in uncertainty of the TWAC found by adsorptive samplers were presented. It was concluded that techniques of passive sampling of pharmaceuticals need a new uptake model to fit the current situation.
Collapse
Affiliation(s)
- Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
8
|
Xue J, Zhu X, Liu Z, Hua R, Wu X. Using silicone rubber and polyvinylchloride as equilibrium passive samplers for rapid and sensitive monitoring of pyrethroid insecticides in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138797. [PMID: 32339841 DOI: 10.1016/j.scitotenv.2020.138797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Passive sampling to regularly identify the occurrence of pyrethroid insecticides in urban streams is a crucial work of risk management with respect to intrinsic toxicity of pyrethroids to aquatic organisms. Polymeric films, based on an equilibrium sampling principle, have found increasing use as passive samplers for hydrophobic contaminants. Herein, we investigated two thin-film samplers, namely silicone rubber (SR) and polyvinylchloride (PVC), compatible with a suite of 8 pyrethroids, for measuring freely dissolved concentrations (Cfree) in water. The characteristics of SR and PVC samplers were estimated in terms of equilibrium partitioning coefficients (Kf) with log units of 3.90-4.67 and sampling rates (Rs) of 0.011-0.016 L/h. The parameters were correlated positively with octanol-water partition coefficients of the compounds, whereas independent on water solubility. A strong agreement between Cfree obtained from the two samplers was observed in a range of 0.1-10 μg/L for pyrethroids under laboratory simulated conditions. Both of SR and PVC were confirmed as equilibrium samplers with faster sampling rates of pyrethroids that equilibrated on films within only one week, and higher accumulation at factors of 5.3-12.5 and 1.5-2.4 compared to a performance reference compound (PRC)-preload sampler. Additionally, the comparable results of the two passive sampling methods in multiple field applications indicated that the direct deployment of the two samplers without PRCs calibration can provide reliable assessment of trace concentrations. This study demonstrated the routine utilization of SR and PVC as promising tools for rapid and sensitive in-situ monitoring of pyrethroids, and indicators for the bioavailability against total chemical concentrations in variable aquatic environments.
Collapse
Affiliation(s)
- Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| | - Xianbin Zhu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Zikun Liu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| |
Collapse
|
9
|
Gouveia TIA, Alves A, Santos MSF. New insights on cytostatic drug risk assessment in aquatic environments based on measured concentrations in surface waters. ENVIRONMENT INTERNATIONAL 2019; 133:105236. [PMID: 31675568 DOI: 10.1016/j.envint.2019.105236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 05/21/2023]
Abstract
Cytostatic drugs are compounds used to treat cancer, one of the deadliest diseases worldwide with a rising yearly incidence. However, the occurrence and concentrations of a large number of cytostatics in waters and wastewaters are unknown. Thus, this study sought to analyze the concentrations of these compounds in different aquatic environments worldwide to assess the risk that these compounds pose to aquatic organisms. The top five most monitored cytostatics in aquatic environments are fluorouracil, methotrexate, tamoxifen, ifosfamide, and cyclophosphamide. Risk quotients (RQs) based on maximum reported measured concentrations revealed that mycophenolic acid and tamoxifen pose a high risk to aquatic organisms (RQmax ≥ 1) at concentrations observed in surface waters. Moreover, methotrexate and tegafur were categorized as moderate risk compounds, and bicalutamide was found to pose a low risk. Importantly, the available analytical methodologies for the quantification of some cytostatics (e.g., cisplatin, fluorouracil, daunorubicin, imatinib, and mycophenolic acid) in water could not rule out potential risk to aquatic biota, since estimated risks for these compounds using the lowest method detection limits reported in the literature (RQ MDL) were all ≥0.01 (i.e., low risk or higher). Moreover, risks based on predicted concentrations (RQ PEC) were consistently lower than those based on measured concentrations, highlighting the importance of risk assessment based on measured values. Thus, accurate and sensitive analytical methods are crucial to identify and quantify cytostatic exposure in aquatic ecosystems in order to preserve biodiversity and ensure a safer environment.
Collapse
Affiliation(s)
- Teresa I A Gouveia
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Mónica S F Santos
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
10
|
Straub JO, Oldenkamp R, Pfister T, Häner A. Environmental Risk Assessment for the Active Pharmaceutical Ingredient Mycophenolic Acid in European Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2259-2278. [PMID: 31225916 PMCID: PMC6856805 DOI: 10.1002/etc.4524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 05/30/2023]
Abstract
An environmental risk assessment is presented for mycophenolic acid (MPA), an immunosuppressive pharmaceutical used for prevention of organ rejection, and its prodrug mycophenolate mofetil (MPM). Mycophenolic acid will not significantly adsorb to activated sludge. In activated sludge, 14 C-MPA attained >80% degradation, supporting an older environmental fate test with the same compound. Based on n-octanol/water distribution coefficient (log DOW ) values of 2.28, 0.48, and ≤-1.54 at pH 5, 7, and 9, respectively, MPA is not expected to bioaccumulate. Sales amounts of MPA+MPM in Europe were used to derive predicted environmental concentrations (PECs) in surface waters; PECs were refined by including expected biodegradation in sewage treatment, average drinking water use, and average dilution of the effluents in the receiving waters per country. In addition, the exposure to pharmaceuticals in the environment (ePiE) model was run for 4 European catchments. The PECs were complemented with 110 measured environmental concentrations (MECs), ranging from below the limit of quantitation (<0.001 µg/L) to 0.656 µg/L. Predicted no-effect concentrations (PNECs) were derived from chronic tests with cyanobacteria, green algae, daphnids, and fish. The comparison of PECs and MECs with the PNECs resulted in a differentiated environmental risk assessment in which the risk ratio of PEC/PNEC or MEC/PNEC was <1 in most cases (mostly >90%), meaning no significant risk, but a potential risk to aquatic organisms in generally <10% of instances. Because this assessment reveals a partial risk, the following questions must be asked: How much risk is acceptable? and Through which measures can this risk be reduced? These questions are all the more important in view of limited alternatives for MPM and MPA and the serious consequences of not using them. Environ Toxicol Chem 2019;38:2259-2278. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jürg Oliver Straub
- Group Safety, Health, and Environmental Protection, F.Hoffmann‐La Roche, BasleSwitzerland
| | - Rik Oldenkamp
- Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
- Environment DepartmentUniversity of York, HeslingtonYorkUnited Kingdom
| | - Thomas Pfister
- Group Safety, Health, and Environmental Protection, F.Hoffmann‐La Roche, BasleSwitzerland
| | - Andreas Häner
- Group Safety, Health, and Environmental Protection, F.Hoffmann‐La Roche, BasleSwitzerland
| |
Collapse
|
11
|
Kaserzon SL, Vijayasarathy S, Bräunig J, Mueller L, Hawker DW, Thomas KV, Mueller JF. Calibration and validation of a novel passive sampling device for the time integrative monitoring of per- and polyfluoroalkyl substances (PFASs) and precursors in contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:423-431. [PMID: 30554088 DOI: 10.1016/j.jhazmat.2018.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/13/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs) as key components in aqueous film forming foams (AFFF) have led to growing incidences of environmental contamination. The aim of this study was to investigate a novel diffusion based passive sampling device comprising of microporous polyethylene (PE) for the long-term time-integrative monitoring of PFASs in groundwater systems. PE passive samplers (PEs) were deployed for 83 d and calibrated at five AFFF impacted groundwater sites representing different PFASs concentration levels (ΣPFAS 0.001 to 0.1 ng mL-1). Grab samples were collected simultaneously. Linear accumulation of 12 PFASs (r2 ≥ 0.84) were observed in the PEs over 83 d and PFASs sampling rates were 2-5 mL d-1. Estimated mean half-times to equilibrium for PFASs ranged between 122 and 490 d. A separate validation study compared PEs and grab sampling during a 93 d field deployment, at seven groundwater sites near a fire fighting training ground. Seventeen PFASs were detected in PEs and fifteen in grab samples. PEs showed higher sensitivity for precursors (i.e. 4:2 FTS and FOSA). Time-weighted-average water concentrations across all validation sites for all PFASs determined from PEs were strongly correlated (r2 = 0.98) with grab samples, (within range 0.3-60 ng mL-1 PFOS). Results represent the first application of passive sampling technology for the quantitative assessment of PFASs in groundwater systems.
Collapse
Affiliation(s)
- Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall street, Woolloongabba, Queensland, 4102, Australia.
| | - Soumini Vijayasarathy
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall street, Woolloongabba, Queensland, 4102, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall street, Woolloongabba, Queensland, 4102, Australia
| | - Linus Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall street, Woolloongabba, Queensland, 4102, Australia
| | - Darryl W Hawker
- Griffith School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall street, Woolloongabba, Queensland, 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall street, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
12
|
Santos MSF, Franquet-Griell H, Alves A, Lacorte S. Development of an analytical methodology for the analysis of priority cytostatics in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1264-1272. [PMID: 30248851 DOI: 10.1016/j.scitotenv.2018.07.232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 05/24/2023]
Abstract
The consumption of cytostatics has remarkably increased over the last years due to the high cancer incidence worldwide. In previous studies, seven cytostatics were already recognized to potentially induce chronic effects in aquatic organisms, taking into account their estimated concentrations in surface waters: cyclophosphamide (CYC), capecitabine (CAP), mycophenolic acid (MPA), imatinib (IMA), bicalutamide (BICA), prednisone (PRED) and 5-fluorouracil (5FU). The objective of the present study was to simultaneously analyse these 7 prioritized compounds, which have the highest chances to be found in surface and wastewaters. The analytical challenge relies in the determination of these very polar compounds, which have different chemical and structural properties. Solid-phase extraction with an Ultra Performance Liquid Chromatograph-Mass Spectrometer in electrospray ionization mixed mode (5-fluorouracil and bicalutamide in negative mode and the others in positive one) was developed to determine seven cytostatics in wastewater and surface water. Among eight tested cartridges with different sorbents and conditions, the best extraction performance was attained with Oasis WAX at pH 10, with recoveries ranging from 31 ± 4 (5FU) and 103 ± 17% (MPA). Regarding the chromatographic analysis, the best results were achieved with an XBridge amide column. The final analytical methodology was successfully applied for the analysis of real water samples, confirming the presence of risky cytostatics in surface and wastewaters.
Collapse
Affiliation(s)
- Mónica S F Santos
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Helena Franquet-Griell
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Arminda Alves
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Stroski KM, Challis JK, Wong CS. The influence of pH on sampler uptake for an improved configuration of the organic-diffusive gradients in thin films passive sampler. Anal Chim Acta 2018; 1018:45-53. [DOI: 10.1016/j.aca.2018.02.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 11/25/2022]
|