1
|
Luo X, Wu C, Lin Y, Li W, Deng M, Tan J, Xue S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J Environ Sci (China) 2023; 125:662-677. [PMID: 36375948 DOI: 10.1016/j.jes.2022.01.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/16/2023]
Abstract
Smelting activities pose serious environmental problems due to the local and regional heavy metal pollution in soils they cause. It is therefore important to understand the pollution situation and its source in the contaminated soils. In this paper, data on heavy metal pollution in soils resulting from Pb/Zn smelting (published in the last 10 years) in China was summarized. The heavy metal pollution was analyzed from a macroscopic point of view. The results indicated that Pb, Zn, As and Cd were common contaminants that were present in soils with extremely high concentrations. Because of the extreme carcinogenicity, genotoxicity and neurotoxicity that heavy metals pose, remediation of the soils contaminated by smelting is urgently required. The primary anthropogenic activities contributing to soil pollution in smelting areas and the progressive development of accurate source identification were performed. Due to the advantages of biominerals, the potential of biomineralization for heavy metal contaminated soils was introduced. Furthermore, the prospects of geochemical fraction analysis, combined source identification methods as well as several optimization methods for biomineralization are presented, to provide a reference for pollution investigation and remediation in smelting contaminated soils in the future.
Collapse
Affiliation(s)
- Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Yongcheng Lin
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong 999077, China
| | - Min Deng
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Jingqiang Tan
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Saeed M, Masood Quraishi U, Malik RN. Identification of arsenic-tolerant varieties and candidate genes of tolerance in spring wheat (Triticum aestivum L.). CHEMOSPHERE 2022; 308:136380. [PMID: 36088976 DOI: 10.1016/j.chemosphere.2022.136380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Despite the growing concerns about arsenic toxicity, information on tolerance and responsible genetic factors in wheat remains elusive. To address that, the present study aimed to screen the wheat varieties against arsenic based on growth parameters, yield, grain accumulation, and associated genes. A total of 110 wheat varieties were grown in arsenic-contaminated regions to record physio-morphological traits. The wheat 90K Infinium iSelect SNP array was used for the genome-wide association model to identify genomic regions. Wheat varieties such as Punjab-81, AARI-11, and Daman showed arsenic concentrations >45 μg/kg in similar conditions as well as the impact on grain yield, chlorophyll, Thousand Kernel Weight, and plant height. Contrastingly, varieties like Kohistan-97, As-2002, Barani-70, and Pari-73 showed grain concentrations <5 μg/kg grown under highly contaminated conditions. Three significant loci associated with arsenic accumulation in grain were identified on chromosomes 6A (qASG1-6A) and 6B (qASG3-6B and qASG4-6B). Annotation at these loci identified 39 wheat genes among which several were important for growth and tolerance against stress. The candidate gene (TraesCS6B02G429400) responsible for Glutathione-S-transferase was identified in the present study and must be investigated further using a transcriptomic approach. The present study provided background information for breeding prospects to improve wheat yield and tolerance against arsenic.
Collapse
Affiliation(s)
- Muhammad Saeed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Umar Masood Quraishi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Zhang D, Lei M, Wan X, Guo G, Zhao X, Liu Y. Responses of diversity and arsenic-transforming functional genes of soil microorganisms to arsenic hyperaccumulator (Pteris vittata L.)/pomegranate (Punica granatum L.) intercropping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157767. [PMID: 35926620 DOI: 10.1016/j.scitotenv.2022.157767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Intercropping of arsenic (As) hyperaccumulator (Pteris vittata L.) with crops can reduce the As concentration in soil and the resulting ecological and health risks, while maintaining certain economic benefits. However, it is still unclear how As-transforming functional bacteria and dominant bacteria in the rhizosphere of P. vittata affect the microbial properties of crop rhizosphere soil, as well as how As concentration and speciation change in crop rhizosphere soil under intercropping. This is of great significance for understanding the biogeochemical cycle of As in soil and crops. This study aimed to use high-throughput sequencing and quantitative polymerase chain reaction (qPCR) to analyze the effects of different rhizosphere isolation patterns on the bacterial diversity and the copy number of As-transforming functional genes in pomegranate (Punica granatum L.) rhizosphere soil. The results showed that the abundance of bacteria in the rhizosphere soil of pomegranate increased by 16.3 %, and the soil bacterial community structure significantly changed. C_Alphaproteobacteria and o_Rhizobiales bacteria significantly accumulated in the rhizosphere of pomegranate. The copy number of As methylation (arsM) gene in pomegranate rhizosphere soil significantly increased by 63.37 %. The concentrations of nonspecifically sorbed As (F1), As associated with amorphous Fe (hydr)oxides (F3), and the total As (FT) decreased; the proportion of As (III) in pomegranate rhizosphere soil decreased; and the proportion of As (V) increased in pomegranate rhizosphere soil. c_Alphaproteobacteria and o_Rhizobiales accumulated in crop rhizosphere soil under the intercropping of P. vittata with crops. Also, the copy number of As methylation functional genes in crop rhizosphere soil significantly increased, which could reduce As (III) proportion in crop rhizosphere soil. These changes favored simultaneous agricultural production and soil remediation. The results provided the theoretical basis and practical guidance for the safe utilization of As-contaminated soil in the intercropping of As-hyperaccumulator and cash crops.
Collapse
Affiliation(s)
- Degang Zhang
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; HongHe University, Mengzi 661100, Yunnan, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Zhao
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Liu
- HongHe University, Mengzi 661100, Yunnan, China
| |
Collapse
|
4
|
Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Phong Nguyen PQ, Nguyen XP. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. CHEMOSPHERE 2022; 302:134825. [PMID: 35526681 DOI: 10.1016/j.chemosphere.2022.134825] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The use of a cheap and effective adsorption approach based on biomass-activated carbon (AC) to remediate heavy metal contamination is clearly desirable for developing countries that are economically disadvantaged yet have abundant biomass. Therefore, this review provides an update of recent works utilizing biomass waste-AC to adsorb commonly-encountered adsorbates like Cr, Pb, Cu, Cd, Hg, and As. Various biomass wastes were employed in synthesizing AC via two-steps processing; oxygen-free carbonization followed by activation. In recent works related to the activation step, the microwave technique is growing in popularity compared to the more conventional physical/chemical activation method because the microwave technique can ensure a more uniform energy distribution in the solid adsorbent, resulting in enhanced surface area. Nonetheless, chemical activation is still generally preferred for its ease of operation, lower cost, and shorter preparation time. Several mechanisms related to heavy metal adsorption on biomass wastes-AC were also discussed in detail, such as (i) - physical adsorption/deposition of metals, (ii) - ion-exchange between protonated oxygen-containing functional groups (-OH, -COOH) and divalent metal cations (M2+), (iii) - electrostatic interaction between oppositely-charged ions, (iv) - surface complexation between functional groups (-OH, O2-, -CO-NH-, and -COOH) and heavy metal ions/complexes, and (v) - precipitation/co-precipitation technique. Additionally, key parameters affecting the adsorption performance were scrutinized. In general, this review offers a comprehensive insight into the production of AC from lignocellulosic biomass and its application in treating heavy metals-polluted water, showing that biomass-originated AC could bring great benefits to the environment, economy, and sustainability.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Sunil Kumar
- CSIR-NEERI, Nehru Marg, Nagpur, 440 020, India
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, CEREGE, Aix-en-Provence, 13100, France.
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rajender S Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West M.L.K. Drive, MS 443, Cincinnati, OH, 45268, United States
| | - N Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Zhang M, Sun X, Hu Y, Chen G, Xu J. The influence of anthropogenic activities on heavy metal pollution of estuary sediment from the coastal East China Sea in the past nearly 50 years. MARINE POLLUTION BULLETIN 2022; 181:113872. [PMID: 35753249 DOI: 10.1016/j.marpolbul.2022.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Historical records of eight heavy metals (HMs: Cu, Zn, Cr, Ni, Pb, As, Hg and Cd) were analyzed in two dated sediment cores collected from the coastal East China Sea (Meishan Bay, MSB) to investigate the influence of anthropogenic activities on estuary sediment from 1972 to 2019. The sedimentary records of HMs in the two cores reflected the development of economy and change of energy consumption in China's east coastal areas. The contents of most HMs in sediments had no change or showed a downward trend before the 1980s. After the 1980s, the contents of HMs showed an increasing trend, mainly because of the rapid development of aquaculture, industry, and agriculture. The distribution of HMs outside the bay (OB) was mainly affected by industry, shipping, and agriculture (vegetable planting), while HMs in sediments inside the bay (IB) was affected by shipping, agriculture, and aquaculture. Principle component analysis (PCA) showed that Cd, Cr, and Ni could be attributed to industrial discharge, while As, Cu, Pb, and Zn were associated with shipping, agriculture, and aquaculture. Sediments were slightly polluted with Cd (Igeo:0.10-0.71, CF:1.90-7.74) and Ni (Igeo:0.08-0.92, CF:1.25-12.55), and seriously polluted with Hg (Igeo:0.95-1.76, CF:13.43-85.65). This study provides insights for the local governments to raise awareness of HM pollution in the coastal East China Sea and formulate corresponding pollution control measures.
Collapse
Affiliation(s)
- Mei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315832, China; Ningbo Institute of Oceanography, Ningbo 315832, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial, Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Zhuhai 519082, China, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China.
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325000, China
| | - Guo Chen
- Supervision, Inspection and Testing Center of Agricultural Products Quality and Security, Ministry of Agriculture, Ningbo 315040, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
6
|
Arsenic uptake and toxicity in wheat (Triticum aestivum L.): A review of multi-omics approaches to identify tolerance mechanisms. Food Chem 2021; 355:129607. [PMID: 33799259 DOI: 10.1016/j.foodchem.2021.129607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022]
Abstract
Arsenic (As) due to its widespread has become a primary concern for sustainable food production, especially in Southeast Asian countries. In that context, the present review presented a comprehensive detail of the available literature marking an assortment of As-induced impacts on wheat. The conclusive findings of past research suggest that As tends to grossly affect the germination, elongation, biomass, grain yield, and induce oxidative stress. Several human studies are suggestive of higher cancer risks (>1 × 10-6) due to the ingestion of wheat grains. However, the body of proof is limited and the scarcity of information limited understanding about tolerance mechanism in wheat against As. Therefore, the paper provided a reference from tolerance mechanism based studies in other crops like rice and maize. The generated knowledge of arsenomics would pave the way for plant breeders to develop resistant varieties for As to ensure sustainable food production.
Collapse
|
7
|
Saldaña-Robles N, Damián-Ascencio C, Gutiérrez-Chávez A, Zanor G, Guerra-Sánchez R, Herrera-Díaz I, Saldaña-Robles A. Spatio-temporal groundwater arsenic distribution in Central Mexico: implications in accumulation of arsenic in barley (Hordeum vulgare L.) agrosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11333-11347. [PMID: 33123880 DOI: 10.1007/s11356-020-11317-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
In the present work, a spatio-temporal study of arsenic (As) concentration in groundwater and its impact in barley uptake is presented. The impact of As on barley is studied through the determination of its bioaccumulation in the soil-plant system, As uptake, as well as a correlation between As concentration in water and its temperature in the groundwater. For the groundwater, spatial and temporal variability of As concentration in central Mexico was determined through a geostatistical analysis using ordinary kriging. The results show that the variability of As in the ground water is correlated with its temperature (R2 > 0.83). The As accumulation in the structures of plant follows the order root > leaf > ear in concentration. The bioaccumulation factor BAFT suggests that As is mobilized to the aerial parts of the barely for both As concentrations used in the irrigation water. However, for As concentration lower than 25 μg L-1, the BAFT is lower than 0.57, suggesting that the amount of As in root is the same as that contained in the aerial parts; whereas, for higher As concentrations (from 170 to 250 μg L-1), the BAFT is around 0.92, indicating that the As is mainly contained in root. The spatial distribution of As concentration trend in groundwaters along the time is the same, which means high As concentration areas remain in the same groundwaters and these areas are presenting the highest water temperature. These results shall contribute to understand the bioaccumulation of As in barley and the As spatial variability in central Mexico.
Collapse
Affiliation(s)
- Noé Saldaña-Robles
- Department of Agricultural Engineering, Universidad de Guanajuato, 36500, Irapuato, GTO, México
| | - Cesar Damián-Ascencio
- Department of Mechanical Engineering, Universidad de Guanajuato, 36886, Salamanca, GTO, Mexico
| | - Abner Gutiérrez-Chávez
- Department of Veterinary and Zootechny, Universidad de Guanajuato, 36500, Irapuato, GTO, Mexico
| | - Gabriela Zanor
- Department of Environmental Sciences, Universidad de Guanajuato, 36500, Irapuato, GTO, Mexico
| | | | - Israel Herrera-Díaz
- Department of Agricultural Engineering, Universidad de Guanajuato, 36500, Irapuato, GTO, México
| | - Adriana Saldaña-Robles
- Department of Agricultural Engineering, Universidad de Guanajuato, 36500, Irapuato, GTO, México.
| |
Collapse
|
8
|
Mishra T, Pandey VC, Praveen A, Singh NB, Singh N, Singh DP. Phytoremediation ability of naturally growing plant species on the electroplating wastewater-contaminated site. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4101-4111. [PMID: 32060865 DOI: 10.1007/s10653-020-00529-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/21/2020] [Indexed: 05/04/2023]
Abstract
The presence of heavy metal in soil and water resources has serious impact on human health. The study was designed to examine the phytoremediation ability of plant species that are growing naturally on the Zn-contaminated site. For the study, six plant species and their rhizospheric soil as well as non-rhizospheric soil samples were collected from different parts of the industrial sites for chemical and biological characterization. Visual observations and highest importance value index (IVI) through biodiversity study revealed potential plants as effective ecological tools for the restoration of the contaminated site. Among the plants, almost all were the most efficient in accumulating Fe, Mn, Cu and Zn in its shoots and roots, while Cynodon dactylon, Chloris virgata and Desmostachya bipinnata were found to be stabilizing Cr, Pb and Cd (bioconcentration factor in root = 7.95, 6.28 and 1.98 as well as translocation factor = 0.48, 0.46 and 0.78), respectively. Thus, the results of this study showed that the naturally growing plant species have phytoremediation potential to remediate the electroplating wastewater-contaminated site. These plant species are successful phytoremediators with their efficient metal stabilizing and well-evolved tolerance to heavy metal toxicity.
Collapse
Affiliation(s)
- Tripti Mishra
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Department of Civil Engineering, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Vimal Chandra Pandey
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, Uttar Pradesh, 226025, India.
| | - Ashish Praveen
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - N B Singh
- Department of Civil Engineering, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Nandita Singh
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - D P Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
9
|
Praveen A, Pandey VC. Pteridophytes in phytoremediation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2399-2411. [PMID: 31587160 DOI: 10.1007/s10653-019-00425-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/17/2019] [Indexed: 05/21/2023]
Abstract
Soil contamination by heavy metals and metalloids is a serious problem which needs to be addressed. There are several methods for removal of contaminants, but they are costly, while the method of phytoremediation is eco-friendly and cost-effective. Pteridophytes have been found to remediate heavy metal-contaminated soil. Pteridophytes are non-flowering plant that reproduces by spores. Pteris vittata has been reported as the first fern plant to hyperaccumulate arsenic. The Pteris species belongs to the order Pteridales. Other ferns that are known phytoremediators are, for example, Nephrolepis cordifolia and Hypolepis muelleri (identified as phytostabilisers of Cu, Pb, Zn and Ni); similarly Pteris umbrosa and Pteris cretica accumulate arsenic in leaves. So, pteridophytes have a number of species that accumulate contaminants. Many of them have been identified, while various other are being explored. The present review article describes the phytoremediation potential of pteridophytes plants and suggests as a potential asset for phytoremediation programs.
Collapse
Affiliation(s)
- Ashish Praveen
- Plant Ecology and Environmental Science Division, National Botanical Research Institute, Lucknow, Uttar Pradesh, 226001, India
- Department of Botany, Markham College of Commerce, Vinoba Bhawe University, Hazaribag, Jharkhand, 825301, India
| | - Vimal Chandra Pandey
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, U.P., India.
| |
Collapse
|
10
|
Arsenic Uptake and Accumulation Mechanisms in Rice Species. PLANTS 2020; 9:plants9020129. [PMID: 31972985 PMCID: PMC7076356 DOI: 10.3390/plants9020129] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Rice consumption is a source of arsenic (As) exposure, which poses serious health risks. In this study, the accumulation of As in rice was studied. Research shows that As accumulation in rice in Taiwan and Bangladesh is higher than that in other countries. In addition, the critical factors influencing the uptake of As into rice crops are defined. Furthermore, determining the feasibility of using effective ways to reduce the accumulation of As in rice was studied. AsV and AsIII are transported to the root through phosphate transporters and nodulin 26-like intrinsic channels. The silicic acid transporter may have a vital role in the entry of methylated As, dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA), into the root. Amongst As species, DMA(V) is particularly mobile in plants and can easily transfer from root to shoot. The OsPTR7 gene has a key role in moving DMA in the xylem or phloem. Soil properties can affect the uptake of As by plants. An increase in organic matter and in the concentrations of sulphur, iron, and manganese reduces the uptake of As by plants. Amongst the agronomic strategies in diminishing the uptake and accumulation of As in rice, using microalgae and bacteria is the most efficient.
Collapse
|
11
|
Vardhan KH, Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111197] [Citation(s) in RCA: 500] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Safi SR, Senmoto K, Gotoh T, Iizawa T, Nakai S. The effect of γ-FeOOH on enhancing arsenic adsorption from groundwater with DMAPAAQ + FeOOH gel composite. Sci Rep 2019; 9:11909. [PMID: 31417120 PMCID: PMC6695404 DOI: 10.1038/s41598-019-48233-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/01/2019] [Indexed: 11/14/2022] Open
Abstract
Arsenic contamination of groundwater is a serious concern worldwide. The research gaps in removing arsenic are selectivity, regeneration and effective removal rate at neutral pH levels. In this study, we discussed the reasons of the high arsenic adsorption from groundwater of our previously developed adsorbent, a cationic polymer gel, N,N-dimethylamino propylacrylamide, methyl chloride quaternary (DMAPAAQ), loaded with iron hydroxide. We used a transmission electron microscope (TEM) and thermogravimetric analyser (TGA) to detect the iron contents in the gel and ensure its maximum impregnation. We found that the gel contains 62.05% FeOOH components. In addition, we used the Mössbauer spectroscopy to examine the type of impregnated iron in the gel composite and found that it was γ-FeOOH. Finally, we used Fourier transform infrared spectroscopy (FTIR) to examine the surface functional groups present in the gel and the differences in those groups before and after iron impregnation. Similarly, we also investigated the differences of the surface functional groups in the gel, before and after the adsorption of both forms of arsenic. To summarize, this study described the characteristics of the gel composite, which is selective in adsorption and cost effective, however further applications should be investigated.
Collapse
Affiliation(s)
- Syed Ragib Safi
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8527, Japan
| | - Kiyotaka Senmoto
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8527, Japan
| | - Takehiko Gotoh
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8527, Japan.
| | - Takashi Iizawa
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8527, Japan
| | - Satoshi Nakai
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
13
|
Safi SR, Gotoh T, Iizawa T, Nakai S. Development and regeneration of composite of cationic gel and iron hydroxide for adsorbing arsenic from ground water. CHEMOSPHERE 2019; 217:808-815. [PMID: 30458416 DOI: 10.1016/j.chemosphere.2018.11.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Globally, arsenic contaminated groundwater is a serious concern for human health. Previous studies have developed various methods to remove arsenic. But, most of them fail to selectively adsorb arsenic and regenerate. In this study, we developed an adsorbent, a cationic polymer gel loaded with iron hydroxide, which can adsorb arsenic from groundwater more effectively than the other adsorbents. The cationic polymer gel is N,N-dimethylamino propylacrylamide, methyl chloride quaternary (DMAPAAQ). The preparation of the gel is different from the other polymer gels used for adsorption of arsenic and other metals, and it ensures that the gel contains 53.7% FeOOH particles. It should also provide good selectivity, be simple to use and be cost-effective in terms of reusability. The study showed that the gel selectively adsorbed arsenic effectively at neutral pH levels. The results demonstrate that the maximum amount of As(V) adsorption was 123.4 mg/g, which is higher than the other adsorbents. In addition, the gel adsorbed As(V) selectively in the presence of Sulphate. Also, regeneration of the gel was performed for eight consecutive days with 87.6% effectiveness. Additionally, the adsorption mechanism of this gel composite and time required for reaching the equilibrium adsorption is discussed in this paper.
Collapse
Affiliation(s)
- Syed Ragib Safi
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, Hiroshima, 739-8527, Japan
| | - Takehiko Gotoh
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, Hiroshima, 739-8527, Japan.
| | - Takashi Iizawa
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, Hiroshima, 739-8527, Japan
| | - Satoshi Nakai
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
14
|
Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S. Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. CHEMOSPHERE 2018; 211:397-406. [PMID: 30077936 DOI: 10.1016/j.chemosphere.2018.07.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 05/24/2023]
Abstract
The rapid pace of industrial, agricultural and anthropogenic activities in the 20th century has resulted in contamination of heavy metals across the globe. Arsenic (As) is a ubiquitous, naturally occurring toxic metalloid, contaminating the soil and water and affecting human health in several countries. Several physicochemical methods exist for the cleanup of As contamination but these are expensive and disastrous to microbes and soil. Plant based remediation approaches are low cost and environmentally safe. Hence, extensive biochemical, molecular and genetic experiments have been conducted to understand plants' responses to As stress and have led to the identification of potential genes. The available knowledge needs to be utilized to either reduce As accumulation in crop plants (rice) or to enhance As levels in shoots of hyperaccumulators (Pteris vittata). Gene manipulation using biotechnological tools can be an effective approach to exploit the potential genes (plasmamembrane and vacuolar transporters, glutathione and phytochelatin biosynthetic enzymes, etc.) playing pivotal roles in uptake, translocation, transformation, complexation, and compartmentalization of As in plants. The transgenic plants with increased tolerance to As and altered (increased/decreased) As accumulation have been developed. The need, however, exists to design plants with altered expression of two or more genes for harmonizing various events (like arsenate reduction, arsenite complexation, sequestration and translocation) so as to achieve desirable reduction (crop plants) or increase (phytoremediator plants) in As content. This review sheds light on transgenic approaches adopted to modulate As levels in plants and proposes future directions to achieve desirable results.
Collapse
Affiliation(s)
- Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India.
| | - Anshu Rastogi
- Department of Meteorology, Poznan University of Life Sciences, Poznan, Poland.
| | - Anurakti Shukla
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India.
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India.
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand 246174, India.
| |
Collapse
|