1
|
Qi Y, Wu N, Tu Z, Sharma VK, Wei Z, Zhou D, Wang Z, Qu R. Enhanced removal of ammonia in Fe(VI)/Br - oxidation system: Kinetics, transformation mechanism and theoretical calculations. WATER RESEARCH 2022; 222:118953. [PMID: 35964513 DOI: 10.1016/j.watres.2022.118953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
This work systematically examined the capability of ferrate (Fe(VI)) for ammonia oxidation, revealing for the first time that bromide ions (Br-) played an important role in promoting the removal of ammonia in Fe(VI) system. In the presence of 10.0 mM Br-, the removal efficiency of ammonia was nearly 3.4 times that of the control, and 1.0 mM ammonia was almost completely removed after two rounds addition of 1.0 mM Fe(VI) in 60 min. PMSO probe test, electron paramagnetic resonance spectra and radical quenching experiments were employed to interpret the underlying promotion mechanism of Br-, and it was proposed that the formation of active bromine (HOBr/OBr-) played a dominant role in the enhanced oxidative removal of ammonia by Fe(VI). Further kinetic model simulations revealed that HOBr/OBr- and Fe(VI) were the two major reactive species in Fe(VI)/Br- system, accounting for 66.7% and 33.0% of ammonia removal, respectively. As the target contaminant, ammonia could quickly consume the generated HOBr/OBr-, thereby suppressing the formation of brominated disinfection byproducts. Finally, NO3- was identified as the dominant transformation product of ammonia, and density functional theory (DFT) calculations revealed that six reaction stages were involved in ammonia oxidation with the first step as the rate-limiting step. This work would enable the full use of coexisting bromides for effective removal of ammonia from natural waters or wastewaters by in situ Fe(VI) oxidation method.
Collapse
Affiliation(s)
- Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zhengnan Tu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
2
|
Perumal M, Jayaraman D. Understanding the physical and thermodynamic properties of monoethanolamine‐ionic liquids for solvent screening in CO
2
capture process. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muthumari Perumal
- Solvent Development for Clean Technology Lab, Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Chennai India
| | - Dhanalakshmi Jayaraman
- Solvent Development for Clean Technology Lab, Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Chennai India
| |
Collapse
|
3
|
Perumal M, Jayaraman D, Balraj A. Experimental studies on CO 2 absorption and solvent recovery in aqueous blends of monoethanolamine and tetrabutylammonium hydroxide. CHEMOSPHERE 2021; 276:130159. [PMID: 33721628 DOI: 10.1016/j.chemosphere.2021.130159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Solvent-based post-combustion CO2 capture process is recently carried out using chemical absorption with aqueous blends of Monoethanolamine (MEA) and Ionic Liquids (IL) as promising solvents. In the present work, the blends of MEA and TetraButylAmmonium Hydroxide [TBA][OH] have been used for CO2 absorption and desorption process. The solubility of CO2 is investigated with aqueous mixtures for various carbon loading time by varying compositions of MEA and [TBA][OH] as 30 wt%, 28 wt%, 25 wt%, 20 wt% and 0 wt%, 2 wt%, 5 wt%, 10 wt% respectively. It increases with increasing IL concentration for all the aqueous mixtures. The solvent regeneration was also studied at different temperatures in order to recover and reuse the solvent for cyclic absorption. The slight decrease in CO2 solubility was noted for 20 wt% MEA +10 wt% [TBA][OH] mixture. However, this mixture exhibits higher absorption/desorption rate and regeneration efficiency than other mixtures. The regeneration energy of this mixture was also calculated as 28.6 kJ/mol of CO2, which is 32% less than that of baseline 30 wt% MEA. Furthermore, the physicochemical properties such as density, viscosity and surface tension for all the solvent blends were studied experimentally.
Collapse
Affiliation(s)
- Muthumari Perumal
- Solvent Development for Clean Technology Lab, Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Dhanalakshmi Jayaraman
- Solvent Development for Clean Technology Lab, Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - Ambedkar Balraj
- Solvent Development for Clean Technology Lab, Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
4
|
Ma F, Xie HB, Li M, Wang S, Zhang R, Chen J. Autoxidation mechanism for atmospheric oxidation of tertiary amines: Implications for secondary organic aerosol formation. CHEMOSPHERE 2021; 273:129207. [PMID: 33349467 DOI: 10.1016/j.chemosphere.2020.129207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Tertiary amines are one kind of identified amines in the atmosphere. Here, the atmospheric oxidation mechanism and kinetics of tertiary amines were investigated by using computational methods. As proxies of these amines, trimethylamine (TMA) and triethylamine (TEA) have been selected. Results indicate that N-containing peroxy radicals (NRO2⋅), which are key intermediates in ⋅OH initiated oxidation of TMA and TEA, can follow a so-called autoxidation mechanism (a chain reaction of H-shift followed by O2 addition) even on the condition of high NO/HO2⋅ concentration. Such unique mechanism can be ascribed to the ability of N-atom in facilitating the unimolecular H-shift of NRO2⋅ and the absence of H-atoms on N-atom. However, different from TMA reaction system, the pathway dissociating into fragmental products can compete with the autoxidation pathway for TEA system. More importantly, TEA reaction system cannot lead to the formation of products with high O/C ratio due to the autoxidation pathway terminated by the release of fragmental molecules. Such difference can be corroborated by previously observing lower secondary organic aerosol yield of TEA oxidation than that of TMA oxidation. The unveiled mechanism enhances current understanding on atmospheric fate of amines and autoxidation mechanism.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Mingxue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sainan Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
5
|
Tawalbeh M, Al-Ismaily M, Kruczek B, Tezel FH. Modeling the transport of CO 2, N 2, and their binary mixtures through highly permeable silicalite-1 membranes using Maxwell-Stefan equations. CHEMOSPHERE 2021; 263:127935. [PMID: 32810774 DOI: 10.1016/j.chemosphere.2020.127935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Carbon dioxide (CO2) is the main contributor to global warming; therefore, research efforts aim at its capture. Membranes, in particular, zeolite membranes offer a promising approach for CO2 separation and capture. Membranes are typically characterized by their selectivity and permeance that are highly dependent on the operating conditions namely, total feed pressure and composition. Therefore, more reliable characterization parameters are required such as Maxwell- Stefan exchange diffusivities. In this work, a model based on Maxwell-Stefan equations and Extended Langmuir isotherm was developed to investigate the transport of binary mixtures of CO2 and N2 through thin silicalite-1 membranes. The exchange diffusivities, D12 and D21, of CO2 and N2 were determined at different total feed pressures and feed compositions. All gas separation tests were conducted at stage cut not exceeding 5%. The single component diffusivities of CO2 and N2 required by the model were found experimentally using the results of the respective single gas permeation tests. The results displayed that as CO2 concentration in the feed increased from 15% to 85%, the values of D12 and D21 decreased from 2.8 × 10-10 to 1.1 × 10-10 m2/s and 2.8 × 10-10 to 1.3 × 10-10 m2/s, respectively, while the N2 permeance decreased by about one order of magnitude from 2.7 × 10-7 to 2.4 × 10-8 mol/m2.s.Pa. Consequently, the exchange diffusivities showed considerably smaller dependence on the operating conditions compared to the permselectivity and permeance. Hence, they are more appropriate in describing the intrinsic transport characteristics of silicalite-1 membranes.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
| | - Mukhtar Al-Ismaily
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Street, Ottawa, ON, K1N 6N5, Canada
| | - Boguslaw Kruczek
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Street, Ottawa, ON, K1N 6N5, Canada
| | - F Handan Tezel
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
6
|
Wang Z, Zhang Z, Mitch WA. Role of absorber and desorber units and operational conditions for N-nitrosamine formation during amine-based carbon capture. WATER RESEARCH 2020; 170:115299. [PMID: 31760360 DOI: 10.1016/j.watres.2019.115299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
The formation of carcinogenic N-nitrosamines from reactions between solvent amines and flue gas NOx is an important concern for the application of amine-based processes to capture CO2 post-combustion. Using an advanced test rig with interconnected absorber and desorber units, we evaluated the importance for N-nitrosamine formation of the desorber relative to the absorber, and any synergism between the two units. Variations in desorber temperature and in flue gas composition indicated that N-nitrosamine formation from fresh monoethanolamine (MEA) occurred predominantly in the absorber. N-nitrosamine formation was driven by high NO2 and O2 flue gas concentrations, although NO also contributed. In contrast, N-nitrosamine formation from piperazine (PZ) was driven by reactions with nitrite in the heated desorber, and accelerated concurrent with nitrite accumulation. A complementary experiment simulating aged MEA solvent (high nitrite, 1.5% sarcosine as a proxy of secondary amine degradation products) suggested the desorber becomes an order of magnitude more important than the absorber for N-nitrosamine formation. For fresh MEA solvent, increasing the desorber temperature from 110 °C to 130 °C promoted thermal decomposition of N-nitrosamines, reducing N-nitrosamine accumulation rates two-fold. Compared to the test rig, the prevailing practice of using separate absorber columns and autoclave-like treatments to mimic desorber units predicted the direction, but underestimated the magnitude of N-nitrosamine formation. Because N-nitrosamine accumulation rates are the net result of competing formation and thermal decomposition processes, use of continuously cycling test rigs may be necessary to understand the impacts of different operating conditions.
Collapse
Affiliation(s)
- Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Zhong Zhang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
7
|
Liu X, Wang K, Wang J, Zuo J, Peng F, Wu J, San E. Carbon dioxide fixation coupled with ammonium uptake by immobilized Scenedesmus obliquus and its potential for protein production. BIORESOURCE TECHNOLOGY 2019; 289:121685. [PMID: 31323715 DOI: 10.1016/j.biortech.2019.121685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
In this study, immobilized Scenedesmus obliquus (S. obliquus) was proposed to simultaneously alleviate the carbon dioxide (CO2) and ammonium (NH4+-N). Two trophic modes of autotrophy and mixotrophy were conducted by batch experiments with a period of 5 days. The results shown that NH4+-N could be removed more efficiently if algal cells were immobilized, and the trophic mode change had no significant effect on immobilized S. obliquus to NH4+-N removal under 5% CO2 sparging. Specifically, immobilized S. obliquus could remove NH4+-N completely at initial concentrations of 30 and 50 mg/L and reached about 80% removal rate of NH4+-N at the concentration of 70 mg/L under both trophic modes. The protein synthesis was its main removal mechanism and the dominant amino acid components including glutamic acid (Glu), cystine (Cys), arginine (Arg), methionine (Met) and lysine (Lys) were sensitive to NH4+-N assimilation.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jingyao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fei Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Erfu San
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
8
|
Ma F, Ding Z, Elm J, Xie HB, Yu Q, Liu C, Li C, Fu Z, Zhang L, Chen J. Atmospheric Oxidation of Piperazine Initiated by ·Cl: Unexpected High Nitrosamine Yield. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9801-9809. [PMID: 30063348 DOI: 10.1021/acs.est.8b02510] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlorine radicals (·Cl) initiated amine oxidation plays an important role for the formation of carcinogenic nitrosamine in the atmosphere. Piperazine (PZ) is considered as a potential atmospheric pollutant since it is an alternative solvent to monoethanolamine (MEA), a benchmark solvent in a leading CO2 capture technology. Here, we employed quantum chemical methods and kinetics modeling to investigate ·Cl-initiated atmospheric oxidation of PZ, particularly concerning the potential of PZ to form nitrosamine compared to MEA. Results showed that the ·Cl-initiated PZ reaction exclusively leads to N-center radicals (PZ-N) that mainly react with NO to produce nitrosamine in their further reaction with O2/NO. Together with the PZ + ·OH reaction, the PZ-N yield from PZ oxidation is still lower than that of the corresponding MEA reactions. However, the nitrosamine yield of PZ is higher than the reported value for MEA when [NO] is <5 ppb, a concentration commonly encountered in a polluted urban atmosphere. The unexpected high nitrosamine yield from PZ compared to MEA results from a more favorable reaction of N-center radicals with NO compared to O2. These findings show that the yield of N-center radicals cannot directly be used as a metric for the yield of the corresponding carcinogenic nitrosamine.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Zhezheng Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and Climate , Aarhus University , Aarhus 8000 , Denmark
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Cong Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Lili Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|